The interaction of rhodium(II) carboxylates with enzymes. (1/1023)

The effect of rhodium(II) acetate, propionate, and methoxyacetate on the activity of 17 enzymes was evaluated. The enzymes were preincubated with the rhodium(II) complexes in order to detect irreversible inhibition. All enzymes that have essential sulfhydryl groups in or near their active site were found to be irreversibly inhibited. Those enzymes without essential sulfhydryl groups were not affected. In each case, the rate of inactivation closely paralleled the observed toxicity and antitumor activity of rhodium(II) carboxylates; that is, rhodium(II) propionate greater than rhodium(II) acetate greater than rhodium(II) methoxyacetate. In addition, those enzymes that have been demonstrated to be most sensitive to established sulfhydryl inhibitors, such as glyceraldehyde-3-phosphate dehydrogenase, were also most sensitive to rhodium(II) carboxylate inactivation. Proton nuclear magnetic resonance measurements made during the titration of rhodium(II) acetate with cysteine showed that breakdown of the carboxylate cage occurred as a result of reaction with this sulfhydryl-containing amino acid.  (+info)

Action of partially thiolated polynucleotides on the DNA polymerase alpha from regenerating rat liver. (2/1023)

The effects of partially thiolated polynucleotides on the DNA polymerase alpha from regenerating rat liver were investigated. The enzyme was isolated from the nuclear fraction essentially according to the method of Baril et al.; it was characterized as the alpha polymerase on the basis of its response to synthetic templates and its inhibition with N-ethylmaleimide. Although polycytidylic acid had no effect on the DNA polymerase alpha either as a template or as an inhibitor, partially thiolated polycytidylic acid (MPC) was found to be a potent inhibitor, its activity being directly related to its extent of thiolation (percentage of 5-mercaptocytidylate units in the polymer). In comparison, the DNA polymerase beta which was purified from normal rat liver nuclear fraction, was much less sensitive to inhibition by MPC. Analysis of the inhibition of the alpha polymerase by the method of Lineweaver and Burk showed that the inhibitory action of MPC was competitively reversible with the DNA template, but the binding of the 7.2%-thiolated MPC to the enzyme was much stronger than that of the template (Ki/Km less than 0.03). Polyuridylic acid as such showed some inhibitory activity which increased on partial thiolation, but the 8.4%-thiolated polyuridylic acid was less active than the 7.2% MPC. When MPC was annealed with polyinosinic acid, it lost 80% of its inhibitory activity in the double-stranded configuration. However, 1 to 2%-thiolated DNA isolates were significantly more potent inhibitors than were comparable (1.2%-thiolated) MPC and showed competitive reversibility with the unmodified (but "activated") DNA template. These results indicate that the inhibitory activities of partially thiolated polynucleotides depend not only on the percentage of 5-mercapto groups but also on the configuration, base composition, and other specific structural properties.  (+info)

Human colon adenocarcinomas express a MUC1-associated novel carbohydrate epitope on core mucin glycans defined by a monoclonal antibody (A10) raised against murine Ehrlich tumor cells. (3/1023)

A monoclonal antibody (mAb; A10) raised against murine Ehrlich tumor cell surface carbohydrates was tested for reactivity with human normal and malignant tissues. A10 reacted strongly, with a high proportion of adenocarcinomas arising from colon and other tissues but not with breast carcinomas or other malignant tumors. Normal tissues were virtually A10 unreactive, except for the duct cells from breast and pancreas and some bronchial mucosae. Ultrastructural studies showed mAb A10 immunolabeling of both microvilli and mucin droplets in colon cancer cells but not in normal absorptive or globet cells. A10 reacted strongly with mucin-enriched fractions from colon cancer tissues and HT-29 xenografts but not from normal colon tissues. A10 epitope was carried on MUC1 derived from colon adenocarcinomas and probably on other mucin species, although not on MUC2 molecules. A10 epitope was resistant to exoglycosidases and periodate oxidation but sensitive to the Smith's degradation and beta-elimination, suggesting the involvement of O-linked carbohydrates in nonterminal reducing positions. A mucin-type glycosidic linkage was supported because of the lack of A10 reactivity with HT-29 cells grown with phenyl-N-acetyl-alpha-D-galactosaminide. Deglycosylation studies with trifluoromethanesulfonic acid pointed to the involvement of core mucin glycans in the A10 epitope. This epitope was resistant to protease, O- and N-glycanase treatments carried out on trifluoromethanesulfonic acid-deglycosylated mucins. Inhibition studies with core 1, core 2, core 3, and core 6 suggested the latter [GlcNAcbeta(1-6)GalNAc] as being involved in A10 epitope. Taken together, the present results point to A10 defining a core 6-related epitope on core mucin glycans expressed by colon cancer MUC1 not previously associated with human cancer.  (+info)

Phospholipid metabolism in ehrlich ascites tumor cells. II. Turnover rate of ether phospholipids. (4/1023)

1. Radioactive precursors of phospholipids, i.e., 32Pi, [1-14C]glycerol, [2-3H]glycerol, and [1-14C]acetate, were individually injected into the peritoneal cavity of mice bearing Ehrlich ascites tumor cells and the rates of incorporation were estimated. 2. Although [2-3H]glycerol was not practically incorporated into ether phospholipids, the other three radioactive precursors were incorporated into diacyl, 1-O-alkenyl-2-acryl-, and 1-O-alkyl-2-acryl-GPE (GPC). 3. In the experiments on 32Pi or [1-14C]acetate incorporation, 1-O-alkyl compounds in the ethanolamine phosphoglyceride fraction showed high specific activities in comparison with 1-acyl compounds. In the case of [1-14C]glycerol incorporation, a high rate of incorporation into 1-O-alkyl compounds was not found. In the choline phosphoglyceride fraction, a high rate of incorporation of the above precursors into 1-O-alkyl compounds was not observed. 4. The specific activities of 1-O-alkenyl compounds were fairly low compared with those of 1-acyl- and 1-O-acyl- and 1-O-alkyl compounds throughout the incorporation experiments with [1-14C]glycerol and [1-14C]acetate, but in 32Pi incorporation, 1-O-alkenyl compounds showed higher specific activities than 1-acyl compounds in ethanolamine phosphoglyceride, suggesting an exchange reaction of the phosphorylethanolamine moiety. 5. From the above findings, it appears that alkyl ether phospholipids of ethanolamine from may have a significant role in ascites tumor cells, based on their rapid turnover.  (+info)

Isolation of ekatetrone, a new metabolite of producing variants of Streptomyces aureofaciens. (5/1023)

From a mixture of substances formed by producing strains of Streptomyces aureofaciens under conditions of submerged fermentation a new metabolite, ekatetrone, was isolated. Its isolation and basic physical and chemical data are described. Ekatetrone is a quinone derivative with a carboxamide group. In tests in vitro with cells of Ehrlich's ascites tumour evidence was provided that ekatetrone inhibits proteo- and nucleosynthesis.  (+info)

New semisynthetic vinca alkaloids: chemical, biochemical and cellular studies. (6/1023)

A new semisynthetic anti-tumour bis-indol compound, KAR-2 [3'-(beta-chloroethyl)-2',4'-dioxo-3,5'-spiro-oxazolidino-4-dea cetoxy-vinblastine] with lower toxicity than vinca alkaloids used in chemotherapy binds to calmodulin but, in contrast to vinblastine, does not exhibit anti-calmodulin activity. To investigate whether the modest chemical modification of bis-indol structure is responsible for the lack of anti-calmodulin potency and for the different pharmacological effects, new derivatives have been synthesized for comparative studies. The synthesis of the KAR derivatives are presented. The comparative studies showed that the spiro-oxazolidino ring and the substitution of a formyl group to a methyl one were responsible for the lack of anti-calmodulin activities. The new derivatives, similar to the mother compounds, inhibited the tubulin assembly in polymerization tests in vitro, however their inhibitory effect was highly dependent on the organization state of microtubules; bundled microtubules appeared to be resistant against the drugs. The maximal cytotoxic activities of KAR derivatives in in vivo mice hosting leukaemia P388 or Ehrlich ascites tumour cells appeared similar to that of vinblastine or vincristine, however significant prolongation of life span could be reached with KAR derivatives only after the administration of a single dose. These studies plus data obtained using a cultured human neuroblastoma cell line showed that KAR compounds displayed their cytotoxic activities at significantly higher concentrations than the mother compounds, although their antimicrotubular activities were similar in vitro. These data suggest that vinblastine/vincristine damage additional crucial cell functions, one of which could be related to calmodulin-mediated processes.  (+info)

Heterogeneity of native ribosomal 60-S subunits in Ehrlich ascites tumor cells cultured in vitro. (7/1023)

Native large ribosomal subunits in cultured Ehrlich ascites tumor cells analyzed by high-resolution CsCl isopycnic centrifugation consist of at least two classes of particles with densities of 1.57 g/cm3 (LI) and 1.59 g/cm3 (LII), respectively. A wash with 0.5 M KCl converts LI into particles with the density of LII particles. Incubation of derived large subunits (density 1.59 g/cm3) with 0.5 M KCl wash of reticulocyte ribosomes leads to the formation of particles with the density of LI particles. A protein with a molecular weight of 57000 present in the high-KCl wash of 60-S native subunits was virtually absent in the KCl wash of 40-S subunits or polyribosomes suggesting that specific protein factors may be present on some native 60-S subunits. Possible functions of these protein factors are discussed.  (+info)

Glyceraldehyde-3-phosphate dehydrogenase from Ehrlich ascites carcinoma cells its possible role in the high glycolysis of malignant cells. (8/1023)

Glyceraldehyde-3-phosphate dehydrogenase has been purified to apparent homogeneity from Ehrlich ascites carcinoma (EAC) cells. The enzyme is quite active over a pH range of 7.5-9.0 with an optimum pH of 8.4-8.7. The specific activity of the enzyme is much higher than that from other normal sources. In contrast to enzyme obtained from rabbit muscle, the EAC cell enzyme is not significantly inhibited by physiological concentrations of ATP at physiological pH. Kinetic studies using different substrates and inhibitors indicate that the properties of the EAC cell enzyme are significantly different from those of glyceraldehyde-3-phosphate dehydrogenase obtained from other normal sources. The striking dissimilarity of the malignant cell glyceraldehyde-3-phosphate dehydrogenase compared with this enzyme from other normal sources, particularly in respect to the interaction with ATP, may in part explain the high glycolysis of malignant cells.  (+info)