Carcinogenicity test of polyoxyethylene(10) nonylphenyl ether (NP-10) in female B6C3F1 mice. (49/865)

A carcinogenicity study of polyoxyethylene(10)nonylphenyl ether (NP-10) to B6C3F1 mouse was performed using 50 females per group of 4 study groups, or 200 mice in total. Diets containing NP-10 at 0, 500, 1500 and 4500 ppm were prepared and orally administered to the animals repeatedly for 104 weeks, and observation of general conditions, body weight analysis, food consumption analysis, hematologic examination, organ weight analysis and pathological examination were performed. The results are summarized as follows. The mean intake of the test substance in the 500, 1500 and 4500 ppm groups for 104 weeks was 81.5, 254 and 873 mg/kg/day, respectively. There were no differences observed in mortality among the groups and the mortality did not exceed the background data in any groups. There were no signs attributable to the administration of the test substance, and various signs which increased in occurrence with aging were observed in all groups at a similar frequency. Body weight gain was suppressed only in the 4500 ppm group throughout the entire administration period. Food consumption was increased in all treated groups around the early stage of administration and, thereafter, in the 1500 and 4500 ppm groups until the mid-stage of administration. Decreased food efficiency was observed in the 4500 ppm group alone. As a result of the hematologic examination, no changes attributable to the administration of the test substance were observed in any groups. As a result of the organ weight analysis, lower absolute weights of the liver and kidney and higher relative weights of the brain, liver and kidney, which were considered to be changes accompanying the suppressed body weight gain, were observed in the 4500 ppm group. The pathological examination revealed no marked changes in the gross findings in the treated groups. As a result of the histological examination, there were no neoplastic or non-neoplastic lesions in the treated groups which were unequivocally observed to have increased in occurrence. As the above findings show, NP-10 did not cause any increase in the incidence of neoplastic lesions in the mouse by oral administration for 2 years at 873 mg/kg/day (4500 ppm) and was determined to have no carcinogenicity.  (+info)

Tumors of the nervous system in carcinogenic hazard identification. (50/865)

In the absence of adequate data on humans, it is biologically plausible and prudent to regard agents and mixtures for which there is sufficient evidence of carcinogenicity in experimental animals, usually rats and mice, as if they presented a carcinogenic risk to humans. Prediction of cancer sites in humans from bioassay data in rodents is much less certain, however, regardless of organ or tissue. For tumors of the nervous system, there is practically no basis for judging the validity of such predictions, as only ionizing radiation is known to cause tumors of the central nervous system (CNS) in humans. Brain tumors are relatively uncommon findings in bioassays and are rare in untreated rodents, even in rats, which appear to be the most susceptible species. However, CNS tumors have been readily induced in rodents by systemic exposures to some chemicals, notably N-nitrosoalkylureas and other alkylating agents and certain alkyl hydrazine derivatives. CNS tumors in rodents have played a significant role in carcinogenic hazard evaluations of several other chemicals, including acrylonitrile, ethylene oxide, and acrylamide, and have been implicated as part of the tumor spectrum induced by vinyl chloride and certain inorganic lead compounds. In some of these evaluations, it is not certain that all tumors diagnosed as primary brain tumors were correctly identified. Diagnostic difficulties have been presented by undifferentiated small-cell tumors that may invade the brain, including carcinomas of the nasal cavity and undifferentiated schwannomas arising in cranial nerve ganglia, and by the difficulty of reliably distinguishing between focal reactive gliosis and early glial neoplasms. The most striking experimental finding regarding the induction by chemicals of tumors of the nervous system is the dramatically greater susceptibility of the fetal and neonatal nervous system to some carcinogens, as compared with the susceptibility of the nervous system in adults of the same species.  (+info)

Metabolism of chemical carcinogens. (51/865)

The transformation of chemicals is important in carcinogenesis, both in bioactivation and detoxification. Major advances in the past 20 years include appreciation of the migration of reactive electrophiles, the ability of Phase II conjugating enzymes to activate chemicals, understanding of the human enzymes, the realization that DNA modification can result from endogenous chemicals, and the demonstration that cancers can result from the metabolism of chemicals to non-covalently bound products. Pathways of transformation in which major insight was gained during the past 20 years include nitropolycyclic hydrocarbons, polycyclic hydrocarbons and their diols, vinyl halides and dihaloalkanes. Advances in analytical methods and recombinant DNA technology contributed greatly to the study of metabolism of chemical carcinogens. Major advances have been made in the assignment of roles of individual enzymes in reactions. The knowledge developed in this field has contributed to growth in the areas of chemoprevention, molecular epidemiology and species comparisons of risk. Some of the areas in which future development relevant to carcinogen metabolism is expected involve pathways of transformation of certain chemicals, regulation of genes coding for many of the enzymes under consideration and genomics.  (+info)

Lessons learned in applying the U.S. EPA proposed cancer guidelines to specific compounds. (52/865)

An expert panel was convened to evaluate the U.S. Environmental Protection Agency's "Proposed Guidelines for Carcinogen Risk Assessment" through their application to data sets for chloroform (CHCl3) and dichloroacetic acid (DCA). The panel also commented on perceived strengths and limitations encountered in applying the guidelines to these specific compounds. This latter aspect of the panel's activities is the focus of this perspective. The panel was very enthusiastic about the evolution of these proposed guidelines, which represent a major step forward from earlier EPA guidance on cancer-risk assessment. These new guidelines provide the latitude to consider diverse scientific data and allow considerable flexibility in dose-response assessments, depending on the chemical's mode of action. They serve as a very useful template for incorporating state-of-the-art science into carcinogen risk assessments. In addition, the new guidelines promote harmonization of methodologies for cancer- and noncancer-risk assessments. While new guidance on the qualitative decisions ensuing from the determination of mode of action is relatively straightforward, the description of the quantitative implementation of various risk-assessment options requires additional development. Specific areas needing clarification include: (1) the decision criteria for judging the adequacy of the weight of evidence for any particular mode of action; (2) the role of mode of action in guiding development of toxicokinetic, biologically based or case-specific models; (3) the manner in which mode of action and other technical considerations provide guidance on margin-of-exposure calculations; (4) the relative roles of the risk manager versus the risk assessor in evaluating the margin of exposure; and (5 ) the influence of mode of action in harmonizing cancer and noncancer risk assessment methodologies. These points are elaborated as recommendations for improvements to any revisions. In general, the incorporation of examples of quantitative assessments for specific chemicals would strengthen the guidelines. Clearly, any revisions should retain the emphasis present in these draft guidelines on flexibility in the use of scientific information with individual compounds, while simultaneously improving the description of the processes by which these mode-of-action data are organized and interpreted.  (+info)

Responses of transgenic mouse lines p53(+/-) and Tg.AC to agents tested in conventional carcinogenicity bioassays. (53/865)

The haplo-insufficient p53 knockout (p53+/-) and zetaglobin v-Ha-ras (Tg.AC) transgenic mouse models were compared to the conventional two rodent species carcinogen bioassay by prospectively testing nine chemicals. Seven of the chemicals classified as carcinogens in the conventional bioassay induced tumors in the liver or kidneys of B6C3F1 mice, and one (pentachlorophenol) also induced tumors in other tissues. Only three chemicals, furfuryl alcohol, pyridine, and pentachlorophenol, induced tumors in rats. The tumorigenic effect of pyridine was seen in F344 rats but not in Wistar strain rats. None of the chemicals induced tumors in the p53+/- transgenic mice, which is consistent with the absence of genotoxicity of these chemicals. Only two of the seven nongenotoxic carcinogens were positive in the Tg.AC model (lauric acid diethanolamine and pentachlorophenol). These results show that these transgenic models do not respond to many chemicals that show strain- or species-specific responses in conventional bioassays.  (+info)

Re-evaluation of the 2-year chloroform drinking water carcinogenicity bioassay in Osborne-Mendel rats supports chronic renal tubule injury as the mode of action underlying the renal tumor response. (54/865)

Chloroform, generally regarded as a non-genotoxic compound, is associated with the induction of liver and/or kidney tumors in laboratory mice and rats. In particular, chloroform produced renal tubule tumors in low incidence in male Osborne-Mendel rats when administered by corn-oil gavage or in the drinking water. There is a lack of data on intermediate endpoints that may be linked to renal cancer development in this strain of rat, in contrast to mice. Specifically, evidence linking chloroform-induced liver and kidney tumors in mice with cytotoxicity and regenerative cell proliferation is very strong, but weak in the rat. In the present study, kidney tissue from a carcinogenicity bioassay of chloroform in Osborne-Mendel rats was re-evaluated for histological evidence of compound-induced cytotoxicity and cell turnover. All rats treated with 1800 ppm (160 mg/kg/day, high-dose group) in the drinking water for 2 years and half the rats treated with 900 ppm (81 mg/kg/day) had mild to moderate changes in proximal convoluted tubules in the mid to deep cortex indicative of chronic cytotoxicity. Tubule alterations specifically associated with chronic chloroform exposure included cytoplasmic basophilia, cytoplasmic vacuolation, and nuclear crowding consistent with simple tubule hyperplasia. Occasional pyknotic cells, mitotic figures in proximal tubules, and prominent karyomegaly of the renal tubule epithelium were present. These alterations were not present in control groups or at the 200-ppm (19 mg/kg/day) or 400-ppm (38 mg/kg/day) dose levels. This new information adds substantially to the weight of evidence that the key events in chloroform-induced carcinogenicity in rat kidney include sustained cellular toxicity and chronic regenerative hyperplasia.  (+info)

Comparative hepatocarcinogenicity of hexachlorobenzene, pentachlorobenzene, 1,2,4,5-tetrachlorobenzene, and 1,4-dichlorobenzene: application of a medium-term liver focus bioassay and molecular and cellular indices. (55/865)

Of the twelve different chlorobenzene isomers, a thorough evaluation of carcinogenicity has only been assessed on monochlorobenzene, 1,2-, and 1,4-dichlorobenzene, and hexachlorobenzene. In the studies presented here, we measured the ability of 1,4-dichlorobenzene (DCB), 1,2,4,5-tetrachlorobenzene (TeCB), pentachlorobenzene (PeCB), and hexachlorobenzene (HCB) to promote glutathione S-transferase pi (GSTP1-1) positive preneoplastic foci formation in rat liver, following diethylnitrosamine (DEN) initiation. The results from these studies show that TeCB, PeCB, and HCB all promote the formation of GSTP1-1 positive foci and that DCB does not. The numbers and area of foci were greatest following HCB promotion, and TeCB and PeCB were approximately equal in their promoting ability. Levels of hepatic CYP1A2, CYP2B1/2, non-focal GSTP1-1, and c-fos were measured in response to treatment with the 4 chlorobenzene isomers, as were reduced glutathione (GSH) and oxidized glutathione (GSSG) levels. Results from these studies show that induction of CYP1A2 and CYP2B1/2 have correlation with both the presence and degree of GSTP1-1 foci promotion by the 4 chlorobenzenes. Alterations in GSH and GSSG levels were similar in PeCB- and TeCB-treated animals in that GSSG levels were significantly decreased, whereas HCB and DCB did not have this effect, although HCB treatment led to a significant increase in GSH levels. We conclude that induction of CYP1A2 or CYP2B1/2 by chlorobenzene isomers may indicate promotional ability, and that this property might be exploited to predict the hepatocarcinogenicity of other chlorobenzene isomers.  (+info)

Demonstration in vivo that stromelysin-3 functions through its proteolytic activity. (56/865)

Stromelysin-3 (ST3), a matrix metalloproteinase (MMP) expressed in aggressive carcinomas, has been shown to promote tumor development in different in vivo experimental models. However, the inability of its mature form to degrade extracellular matrix components casts doubt on whether ST3 functions in vivo as a protease. In this study, we evaluated whether the ST3 tumor-promoting effect could be ascribed to its proteolytic activity and whether this putative protease could be targeted with MMP inhibitors. Catalytically inactive mutant cDNA of human (h) ST3 or mouse (m) ST3 were generated and transfected into MCF7 cells. When injected into nude mice in the presence of matrigel, the mutant-bearing cells did not exhibit the enhanced tumorigenicity elicited by MCF7 cells transfected with wild-type ST3 cDNA. In a second approach, TIMP2 overproduction in MCF7 cells expressing hST3 was induced by retroviral infection. The co-expression of ST3 and TIMP2 failed to enhance the tumorigenicity of MCF7 cells. Notably, matrigel depleted of low-molecular-weight proteins and growth factors failed to promote the tumorigenicity of ST3-expressing MCF7 cells. These findings provide the first in vivo evidence that ST3 is indeed a protease that can modulate cancer progression by remodeling extracellular matrix and probably by inducing it to release the necessary microenvironmental factors. Thus, ST3 represents an interesting target for specific MMP inhibition.  (+info)