Expression of endogenously activated secreted or cell surface carboxypeptidase A sensitizes tumor cells to methotrexate-alpha-peptide prodrugs. (9/264)

Methotrexate (MTX) is one of the most commonly used agents in the treatment of solid malignancies; however, the toxicities of MTX to bone marrow and gastrointestinal tract complicate this therapy. We, therefore, propose a gene-dependent enzyme prodrug therapy to limit these toxicities by localizing the production of MTX to the site of the tumor. The combination of MTX-alpha-peptide prodrugs, which cannot be internalized by the cellular reduced folate carrier, with carboxypeptidase A (CPA), which can remove the blocking peptide, has been demonstrated previously in vitro using antibody-dependent enzyme prodrug therapy. CPA is normally synthesized as a zymogen that is inactive without proteolytic removal of its propeptide by trypsin. Therefore, to adapt this system to gene-dependent enzyme prodrug therapy, a mutant form of CPA was engineered, CPA(ST3), that does not require trypsin-dependent zymogen cleavage but is instead activated by ubiquitously expressed intracellular propeptidases. Purification, peptide sequencing, and kinetic analysis indicated that mature CPA(ST3) is structurally and functionally similar to the trypsin-activated, wild-type enzyme. In addition, CPA(ST3)-expressing tumors cells were sensitized to MTX prodrugs in a dose- and time-dependent manner. To limit diffusion of CPA, a cell surface localized form was generated by constructing a fusion protein between CPA(ST3) and the phosphatidylinositol linkage domain from decay accelerating factor. SDS-PAGE and flow cytometric analysis of infected tumor cells indicated that CPA(DAF) was cell surface localized. Finally, after retroviral transduction, this enzyme/prodrug strategy exhibited a potent bystander effect, even when <10% of the cells were transduced, because extracellular production of MTX sensitized both transduced and nontransduced cells.  (+info)

Contribution of C-tail residues of potato carboxypeptidase inhibitor to the binding to carboxypeptidase A A mutagenesis analysis. (10/264)

The role of each residue of the potato carboxypeptidase inhibitor (PCI) C-terminal tail, in the interaction with carboxypeptidase A (CPA), has been studied by the analysis of two main kinds of site-directed mutants: the point substitution of each C-terminal residue by glycine and the sequential deletions of the C-terminal residues. The mutant PCI-CPA interactions have been characterized by the measurement of their inhibition constant, Ki, in several cases, by their kinetic association and dissociation constants determined by presteady-state analysis, and by computational approaches. The role of Pro36 appears to be mainly the restriction of the mobility of the PCI C-tail. In addition, and unexpectedly, both Gly35 and Pro36 have been found to be important for folding of the protein core. Val38 has the greatest enthalpic contribution to the PCI-CPA interaction. Although Tyr37 has a minor contribution to the binding energy of the whole inhibitor, it has been found to be essential for the interaction with the enzyme following the cleavage of the C-terminal Gly39 by CPA. The energetic contribution of the PCI secondary binding site has been evaluated to be about half of the total free energy of dissociation of the PCI-CPA complex.  (+info)

Acute, nontoxic cadmium exposure inhibits pancreatic protease activities in the mouse. (11/264)

Toxic effects of cadmium on liver, kidney, lung, and testes have been well established in experimental animals and in cell model systems. However, little is known about the effect of cadmium on pancreas, though the pancreas has been reported to accumulate high concentrations of cadmium. Therefore, in this study we examined the effects of cadmium on the pancreas of mice. A single sc injection of 1 mg Cd/kg to mice had no obvious toxic effects on the liver, kidney, and pancreas at both 1 and 5 days after cadmium treatment. Within the pancreas, however, the activities of trypsin, chymotrypsin, and carboxypeptidase A were significantly decreased at 1 day after cadmium treatment, whereas the activity of carboxypeptidase B was not changed. All pancreatic enzyme activities returned to the control levels by 5 days after cadmium treatment. The concentrations of cadmium in pancreas were very similar at 1 and 5 days after cadmium treatment, indicating a stable deposition of the metal. The concentration of zinc in pancreas was markedly increased at 5 days after cadmium treatment. In order to more fully examine the inhibitory effects of cadmium on these protease activities in pancreas, the direct effects of cadmium on purified proteases were studied in vitro. Contrary to the results in vivo, cadmium increased the activity of purified trypsin in a concentration-dependent manner. Consistent with the in vivo results, the activity of purified carboxypeptidase A was decreased by cadmium treatment in a concentration-dependent fashion in vitro. The activities of chymotrypsin and carboxypeptidase B did not change by the cadmium exposure in vitro. The enhanced activity of trypsin by cadmium was returned to the control levels by subsequent treatment with EDTA, indicating that enhancement was reversible. In addition, the zinc normally contained in purified carboxypeptidase A and carboxypeptidase B was released by the cadmium treatment. These results indicate that cadmium inhibits protease activities within the pancreas in vivo at doses that do not induce overt hepatic, renal, or pancreatic toxicity. Based on in vitro study, the decreases seen in trypsin and chymotrypsin activities might be based on indirect effects of cadmium, whereas the decreases in carboxypeptidase A are probably due to the direct inhibition by the metal.  (+info)

Latexin, a carboxypeptidase A inhibitor, is expressed in rat peritoneal mast cells and is associated with granular structures distinct from secretory granules and lysosomes. (12/264)

Latexin, a protein possessing inhibitory activity against rat carboxypeptidase A1 (CPA1) and CPA2, is expressed in a neuronal subset in the cerebral cortex and cells in other neural and non-neural tissues of rat. Although latexin also inhibits mast-cell CPA (MCCPA), the expression of latexin in rat mast cells has not previously been confirmed. In the present study we examined the expression and subcellular localization of latexin in rat peritoneal mast cells. Western blot and reverse-transcriptase-mediated PCR analyses showed that latexin was contained and expressed in the rat peritoneal mast cells. Immunocytochemically, latexin immunofluorescence was localized on granular structures distinct from MCCPA-, histamine- or cathepsin D-immunopositive granules. Immunoelectron microscopy revealed that latexin was associated with a minority population of granules. The latexin-associated granules were separated from MCCPA- or histamine-containing granules on a self-generating density gradient of polyvinylpyrrolidone-coated silica-gel particles (Percoll). Treatments with high ionic strength and heparinase released latexin from the granules, suggesting that latexin is non-covalently associated with a heparin-like component of the granules. MCCPA and histamine were released from the mast cells after non-immunological and immunological stimulation with compound 48/80, A23187 and anti-IgE antibody, whereas latexin was not released. These results show that latexin is synthesized in rat peritoneal mast cells and suggest that it is associated with a unique type of intracellular granules distinct from MCCPA- and histamine-containing secretory granules and lysosomes.  (+info)

Metallocarboxypeptidases and their protein inhibitors. Structure, function and biomedical properties. (13/264)

Among the different aspects of recent progress in the field of metallocarboxypeptidases has been the elucidation of the three dimensional structures of the pro-segments (in monomeric or oligomeric species) and their role in the expression, folding and inhibition/activation of the pancreatic and pancreatic-like forms. Also of great significance has been the cloning and characterization of several new regulatory carboxypeptidases, enzymes that are related with important functions in protein and peptide processing and that show significant structural differences among them and also with the digestive ones. Many regulatory carboxypeptidases lack a pro-region, unlike the digestive forms or others in between from the evolutionary point of view. Finally, important advances have been made on the finding and characterization of new protein inhibitors of metallocarboxypeptidases, some of them with interesting potential applications in the biotechnological/biomedical fields. These advances are analyzed here and compared with the earlier observations in this field, which was first explored by Hans Neurath and collaborators.  (+info)

Hydrogen exchange monitored by MALDI-TOF mass spectrometry for rapid characterization of the stability and conformation of proteins. (14/264)

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used to monitor hydrogen exchange on entire proteins. Two alternative methods have been used to carry out the hydrogen exchange studies, exchanging deuteron (H to D experiments) or proton (D to H experiments). In the former case, the use of a deuterated matrix has made possible to overcome back-exchange problems and attain reproducible results. The methods presented have been used to determine the slow exchange core of the potato carboxypeptidase inhibitor in different folding states, and to differentially compare the activation domain of human procarboxypeptidase A2 versus three site-directed mutants of different conformational stability. In this work, we show that by using MALDI-TOF MS to monitor hydrogen exchange in entire proteins, it is possible to rapidly check the folding state of a protein and characterize mutational effects on protein conformation and stability, while requiring minimal amounts of sample.  (+info)

Pro-sterol carrier protein-2: role of the N-terminal presequence in structure, function, and peroxisomal targeting. (15/264)

Although the 20-amino acid presequence present in 15-kDa pro-sterol carrier protein-2 (pro-SCP-2, the precursor of the mature 13-kDa SCP-2) alters the function of SCP-2 in lipid metabolism, the molecular basis for this effect is unresolved. The presequence dramatically altered SCP-2 structure as determined by circular dichroism, mass spectroscopy, and antibody accessibility such that pro-SCP-2 had 3-fold less alpha-helix, 7-fold more beta-structure, 6-fold more reactive C terminus to carboxypeptidase A, 2-fold less binding of anti-SCP-2, and did not enhance sterol transfer from plasma membranes. These differences were not due to protein stability since (i) the same concentration of guanidine hydrochloride was required for 50% unfolding, and (ii) the ligand binding sites displayed the same high affinity (nanomolar K(d) values) in the order: cholesterol straight chain fatty acid > kinked chain fatty acid. Laser scanning confocal microscopy and double immunofluorescence demonstrated that pro-SCP-2 was more efficiently targeted to peroxisomes. Transfection of l-cells or McAR7777 hepatoma cells with cDNA encoding pro-SCP-2 resulted in 45% and 59% of SCP-2, respectively, colocalizing with the peroxisomal marker PMP70. In contrast, l-cells transfected with cDNA encoding SCP-2 exhibited 3-fold lower colocalization of SCP-2 with PMP70. In summary, the data suggest for the first time that the 20-amino acid presequence of pro-SCP-2 alters SCP-2 structure to facilitate peroxisomal targeting mediated by the C-terminal SKL peroxisomal targeting sequence.  (+info)

Development of the pancreas in Xenopus laevis. (16/264)

Xenopus embryos have several experimental advantages for studying development. Although these advantages have traditionally been used to elucidate mechanisms of early development, they can also be exploited to investigate issues later in development such as organogenesis. We have begun to study pancreatic organogenesis in Xenopus. Using histological and molecular marker analysis, we characterized the anatomy of the developing pancreas in Xenopus embryos from the time of initial pancreatic rudiment formation to the time when the tadpole starts to feed. We examined the expression of various endocrine hormones, exocrine gene products, and pancreatic transcription factors. Interestingly, the endocrine hormone insulin has restricted expression in the dorsal pancreas. Investigation of pancreatic specification during gastrulation demonstrates that insulin expression is regionalized along the dorsoventral axis early in development.  (+info)