A multifunctional ATP-binding cassette transporter system from Vibrio cholerae transports vibriobactin and enterobactin. (49/1703)

Vibrio cholerae uses the catechol siderophore vibriobactin for iron transport under iron-limiting conditions. We have identified genes for vibriobactin transport and mapped them within the vibriobactin biosynthetic gene cluster. Within this genetic region we have identified four genes, viuP, viuD, viuG and viuC, whose protein products have homology to the periplasmic binding protein, the two integral cytoplasmic membrane proteins, and the ATPase component, respectively, of other iron transport systems. The amino-terminal region of ViuP has homology to a lipoprotein signal sequence, and ViuP could be labeled with [(3)H]palmitic acid. This suggests that ViuP is a membrane lipoprotein. The ViuPDGC system transports both vibriobactin and enterobactin in Escherichia coli. In the same assay, the E. coli enterobactin transport system, FepBDGC, allowed the utilization of enterobactin but not vibriobactin. Although the entire viuPDGC system could complement mutations in fepB, fepD, fepG, or fepC, only viuC was able to independently complement the corresponding fep mutation. This indicates that these proteins usually function as a complex. V. cholerae strains carrying a mutation in viuP or in viuG were constructed by marker exchange. These mutations reduced, but did not completely eliminate, vibriobactin utilization. This suggests that V. cholerae contains genes in addition to viuPDGC that function in the transport of catechol siderophores.  (+info)

Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. (50/1703)

Chlorophyllase (Chlase) is the first enzyme involved in chlorophyll (Chl) degradation and catalyzes the hydrolysis of ester bond to yield chlorophyllide and phytol. In the present study, we isolated the Chlase cDNA. We synthesized degenerate oligo DNA probes based on the internal amino acid sequences of purified Chlase from Chenopodium album, screened the C. album cDNA library, and cloned a cDNA (CaCLH, C. album chlorophyll-chlorophyllido hydrolase). The deduced amino acid sequence (347 aa residues) had a lipase motif overlapping with an ATP/GTP-binding motif (P-loop). CaCLH possibly was localized in the extraplastidic part of the cell, because a putative signal sequence for endoplasmic reticulum is at the N terminus. The amino acid sequence shared 37% identity with a function-unknown gene whose mRNA is inducible by coronatine and methyl jasmonate (MeJA) in Arabidopsis thaliana (AtCLH1). We expressed the gene products of AtCLH1 and of CaCLH in Escherichia coli, and they similarly exhibited Chlase activity. Moreover, we isolated another full-length cDNA based on an Arabidopsis genomic fragment and expressed it in E. coli, demonstrating the presence of the second Arabidopsis CLH gene (AtCLH2). No typical feature of signal sequence was identified in AtCLH1, whereas AtCLH2 had a typical signal sequence for chloroplast. AtCLH1 mRNA was induced rapidly by a treatment of MeJA, which is known to promote senescence and Chl degradation in plants, and a high mRNA level was maintained up to 9 h. AtCLH2, however, did not respond to MeJA.  (+info)

Purification and characterization of a novel extracellular lipase catalyzing hydrolysis of oleyl benzoate from Acinetobacter nov. sp. strain KM109. (51/1703)

A new lipase (OBase) which efficiently hydrolyzes oleyl benzoate (OB) was found in the culture supernatant of Acinetobacter nov. sp. strain KM109, a new isolate growing in a minimum medium containing OB as the sole carbon source. OBase was purified to homogeneity with 213-fold purification and 0.8% yield. The molecular weight was estimated to be 62,000 +/- 1,000 by SDS-PAGE under denatured-reduced conditions and to be 50,000 +/- 1,000 by gel-filtration HPLC under native conditions; these findings indicate that OBase is a monomeric enzyme. The optimum temperature and pH of OBase were about 45 degrees C and pH 8. Temperature and pH stabilities were at or lower than 35 degrees C and in a range of pH 6-8, respectively. Purified OBase preferentially hydrolyzed p-nitrophenyl benzoate (pNPB) over p-nitrophenyl acetate (pNPA) or p-nitrophenyl caproate (pNPC) [pNPB/pNPA = 20 and pNPB/pNPC = 5.4], indicating that OBase has a high affinity for benzoyl esters. Partial amino-acid sequences of OBase fragments obtained after lysyl endopeptidase treatment showed no similarity with known proteins.  (+info)

A novel protein that binds juvenile hormone esterase in fat body tissue and pericardial cells of the tobacco hornworm Manduca sexta L. (52/1703)

Juvenile hormone esterase degrades juvenile hormone, which acts in conjunction with ecdysteroids to control gene expression in insects. Circulating juvenile hormone esterase is removed from insect blood by pericardial cells and degraded in lysosomes. In experiments designed to characterize proteins involved in the degradation of juvenile hormone esterase, a pericardial cell cDNA phage display library derived from the tobacco hornworm moth Manduca sexta L. was constructed and screened for proteins that bind juvenile hormone esterase. A 732-base pair cDNA encoding a novel 29-kDa protein (P29) was isolated. Western and Northern analyses indicated that P29 is present in both pericardial cell and fat body tissues and is expressed in each larval instar. In immunoprecipitation experiments, P29 bound injected recombinant juvenile hormone esterase taken up by pericardial cells and native M. sexta juvenile hormone esterase in fat body tissue, where the enzyme is synthesized. Binding assays showed that P29 bound juvenile hormone esterase more strongly than it did a mutant form of the enzyme with mutations that perturb lysosomal targeting. Based on these data, we propose that P29 functions in pericardial cells to facilitate lysosomal degradation of juvenile hormone esterase.  (+info)

Stability of cytotoxic luteinizing hormone-releasing hormone conjugate (AN-152) containing doxorubicin 14-O-hemiglutarate in mouse and human serum in vitro: implications for the design of preclinical studies. (53/1703)

Recently, we developed a series of cytotoxic peptide conjugates containing 14-O-glutaryl esters of doxorubicin (DOX) or 2-pyrrolino-DOX (AN-201). Serum carboxylesterase enzymes (CE) can partially hydrolyze these conjugates in the circulation, releasing the cytotoxic radical, before the targeting is complete. CE activity in serum of nude mice is about 10 times higher than in human serum. Thus, we found that the t(1/2) of AN-152, an analog of luteinizing hormone-releasing hormone (LH-RH) containing DOX, at 0.3 mg/ml is 19. 49 +/- 0.74 min in mouse serum and 126.06 +/- 3.03 min in human serum in vitro. The addition of a CE inhibitor, diisopropyl fluorophosphate (DFP), to mouse serum in vitro significantly (P < 0. 01) prolongs the t(1/2) of AN-152 to 69.63 +/- 4.44 min. When DFP is used in vivo, 400 nmol/kg cytotoxic somatostatin analog AN-238 containing AN-201 is well tolerated by mice, whereas all animals die after the same dose without DFP. In contrast, DFP has no effect on the tolerance of AN-201. A better tolerance to AN-238 after DFP treatment is due to the selective uptake of AN-238 by somatostatin receptor-positive tissues. Our results demonstrate that the suppression of the CE activity in nude mice greatly decreases the toxicity of cytotoxic hybrids containing 2-pyrrolino-DOX 14-O-hemiglutarate and brings this animal model closer to the conditions that exist in humans. The use of DFP together with these peptide conjugates in nude mice permits a better understanding of their mechanism of action and improves the clinical predictability of the oncological and toxicological results.  (+info)

Dexamethasone differentially regulates expression of carboxylesterase genes in humans and rats. (54/1703)

Carboxylesterases play important roles in the metabolism of endogenous and foreign compounds, therefore, xenobiotic regulation of carboxylesterase gene expression has both physiological and pharmacological significance. We previously reported that liver microsomal esterase activity was significantly decreased in rats treated with dexamethasone accompanied by a decrease in immunoreactive proteins of rat hydrolase A, B, and C. The aim of this study was to determine whether the suppressed expression of these enzymes was linked to the change of the mRNA levels, and whether cultured hepatocytes responded similar to whole animals to this chemical. Northern blotting analyses demonstrated that the levels of the corresponding mRNA were markedly decreased in rats treated with dexamethasone, suggesting that the suppressed expression is achieved through trans-suppression and/or increased degradation of the transcripts. Exposure of cultured rat hepatocytes to nanomolar levels of dexamethasone markedly decreased the levels of immunoreactive proteins of hydrolase A, B, and C. In contrast, exposure of cultured human hepatocytes to dexamethasone caused a slight increase in HCE-1 and HCE-2, two major forms of human liver microsomal carboxylesterases. The inductive effects in human hepatocytes were observed only when micromolar concentrations of dexamethasone were used. These results suggest that a major species difference exists regarding the regulation of carboxylesterase gene expression by dexamethasone. Both the glucocorticoid receptor and the pregnane X receptor are known to mediate dexamethasone action. Differential concentrations required suggest that suppression of rat hydrolases is mediated by the glucocorticoid receptor, whereas the induction of human carboxylesterases is mediated by the pregnane X receptor.  (+info)

Carboxylesterases, a key factor in evaluating potential genotoxicity of Trinem antibiotics. (55/1703)

Sanfetrinem cilexetil, a hexetil ester of a Trinem antibiotic, does not induce micronuclei in rat bone marrow cells or induce DNA repair synthesis in rat hepatocytes following oral dosing. However, in vitro chromosome damage and mutations are induced in mammalian cells lacking carboxylesterase activity (human lymphocytes and mouse lymphoma L5178Y cells). In cells possessing carboxylesterase activity (CHL cells), chromosome damage induced by Sanfetrinem cilexetil is not observed. Similarly, if induced rat liver preparations or non-induced preparations from rat or human intestinal cells are present during exposure, genotoxic activity is lost, even in those cells lacking carboxylesterase enzymes. Thus the lack of demonstrable genotoxicity in vivo, in the assays used, is likely to be due to hydrolysis of the parent molecule by non-specific carboxylesterases present within the intestinal epithelium. In turn this data indicates that a genotoxic hazard to humans under therapeutic conditions is unlikely.  (+info)

Cloning and expression of the murine sws/NTE gene. (56/1703)

The Drosophila neurodegeneration gene swiss-cheese encodes a neuronal protein apparently involved in glia-neuron interaction and is homologous to human NTE, the molecular target of organophosphate-induced neuropathy. The isolated Msws/NTE gene is 96% identical to NTE. During development the Msws transcript is expressed in the embryonic respiratory system, different epithelial structures and strongly in the spinal ganglia. Postnatally, Msws mRNA is expressed in all brain areas, with an increasingly restrictive pattern. In adult mice expression is most prominent in Purkinje cells, granule cells and pyramidal neurons of the hippocampus and some large neurons in the medulla oblongata, nucleus dentatus and pons.  (+info)