Mouse liver and kidney carboxylesterase (M-LK) rapidly hydrolyzes antitumor prodrug irinotecan and the N-terminal three quarter sequence determines substrate selectivity. (49/410)

Antitumor prodrug irinotecan is used for a variety of malignancies such as colorectal cancer. It is hydrolyzed to the metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), which exerts its antineoplastic effect. Several human and rodent carboxylesterases are shown to hydrolyze irinotecan, but the overall activity varies from enzyme to enzyme. This report describes a novel mouse liver and kidney carboxylesterase (M-LK) that is highly active toward this prodrug. Northern analyses demonstrated that M-LK was abundantly expressed in the liver and kidney and slightly in the intestine and lung. Lysates from M-LK transfected cells exhibited a markedly higher activity on irinotecan hydrolysis than lysates from the cells transfected with mouse triacylglycerol hydrolase (TGH) (6.9 versus 1.3 pmol/mg/min). Based on the immunostaining intensity with purified rat hydrolase A, M-LK had a specific activity of 173 pmol/mg/min, which ranked it as one of the most efficient esterases known to hydrolyze irinotecan. A chimeric carboxylesterase and its wild-type enzyme (e.g., M-LKn and M-LK), sharing three quarters of the entire sequence from the N-terminus, exhibited the same substrate preference toward irinotecan and two other substrates, suggesting that the N-terminal sequence determines substrate selectivity. M-LK transfected cells manifested more severe cytotoxicity than TGH transfected cells upon being exposed to irinotecan. Topoisomerase I inhibitors such as irinotecan represent a promising class of anticancer drugs. Identification of M-LK as an efficient carboxylesterase to activate irinotecan provides additional sequence information to locate residues involved in irinotecan hydrolysis and thus facilitates the design of new analogs.  (+info)

p53-mediated regulation of expression of a rabbit liver carboxylesterase confers sensitivity to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11). (50/410)

We have exploited the ability of wild-type (wt) p53 to repress gene expression and produce tumor-selective cytotoxicity using viral-directed enzyme prodrug therapy. Vectors containing either the cytomegalovirus or Rous sarcoma virus promoter regulating transcription of a rabbit liver carboxylesterase (CE) have been constructed. Upon transfection of these plasmids into cells expressing either wt or mutant p53, differential expression of the CE has been observed, resulting in sensitization of the cells expressing the latter protein to the anticancer prodrug irinotecan, 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carb- onyloxycamptothecin (CPT-11). Transduction of isogenic cell lines with adenovirus containing CE under control of the Rous sarcoma virus promoter confirmed the decreased sensitization of cells expressing wtp53 to CPT-11. These studies indicate that the inactivation of wtp53 by mutant p53 in human tumor cells may be sufficient enough to generate a therapeutic window for enhanced cytotoxicity with CPT-11.  (+info)

Protecting against cocaine, heroin, and sarin gas. (51/410)

The first X-ray structure of human carboxylesterase 1 (hCE1) and the structures of hCE1 with drug analogs bound reveal important molecular details of how the drugs cocaine, heroin, and tacrine are metabolized and cleared.  (+info)

Crystal structure of human carboxylesterase 1 complexed with the Alzheimer's drug tacrine: from binding promiscuity to selective inhibition. (52/410)

Human carboxylesterase 1 (hCE1) is a broad-spectrum bioscavenger that plays important roles in narcotic metabolism, clinical prodrug activation, and the processing of fatty acid and cholesterol derivatives. We determined the 2.4 A crystal structure of hCE1 in complex with tacrine, the first drug approved for treating Alzheimer's disease, and compare this structure to the Torpedo californica acetylcholinesterase (AcChE)-tacrine complex. Tacrine binds in multiple orientations within the catalytic gorge of hCE1, while it stacks in the smaller AcChE active site between aromatic side chains. Our results show that hCE1's promiscuous action on distinct substrates is enhanced by its ability to interact with ligands in multiple orientations at once. Further, we use our structure to identify tacrine derivatives that act as low-micromolar inhibitors of hCE1 and may provide new avenues for treating narcotic abuse and cholesterol-related diseases.  (+info)

Effects of aspirin and/or salicylate on hydrolysis and glucuronidation of indomethacin in rat erythrocytes and hepatocytes. (53/410)

This study was conducted to explore the mechanism of the pharmacokinetic interaction between aspirin (ASP) and indomethacin (IND) using rat erythrocytes (RBCs) and hepatocytes. ASP was hydrolyzed to salicylic acid (SA) in both the RBCs and hepatocytes. Within RBCs, aspirin and/or salicylate (ASP/SA) increased the concentration of IND, accompanied by a constant hydrolysis of IND. In hepatocytes, a low dose of IND was subjected to glucuronidation rather than hydrolysis, and ASP/SA inhibited both the acylglucuronidation of IND and hydrolysis of IND glucuronide. A high dose of IND underwent hydrolysis with about double the glucuronidation, and ASP/SA decreased the ratio of hydrolysis to glucuronidation, accompanied by a loss of ASP, IND and their metabolites from the medium. Collectively, the results provide metabolic insight into the mechanism of drug-drug interaction between ASP/SA and IND in the hepatocytes and RBCs.  (+info)

DNA polymorphism in the beta-Esterase gene cluster of Drosophila melanogaster. (54/410)

We have analyzed nucleotide polymorphism within a 5.3-kb region encompassing the functional Est-6 gene and the psiEst-6 putative pseudogene in 28 strains of Drosophila melanogaster and one of D. simulans. Two divergent sequence types were detected, which are not perfectly associated with Est-6 allozyme variation. The level of variation (pi) is very close in the 5'-flanking region (0.0059) and Est-6 gene (0.0057), but significantly higher in the intergenic region (0.0141) and putative pseudogene (0.0122). The variation in the 3'-flanking region is intermediate (0.0083). These observations may reflect different levels of purifying selection in the different regions. Strong linkage disequilibrium occurs within the region studied, with the largest values revealed in the putative pseudogene and 3'-flanking region. Moreover, recombination is restricted within psiEst-6. Gene conversion is detected both within and (to a lesser extent) between Est-6 and psiEst-6. The data indicate that psiEst-6 exhibits some characteristics that are typical of nonfunctional genes, while other characteristics are typically attributed to functional genes; the same situation has been observed in other pseudogenes (including Drosophila). The results of structural entropy analysis demonstrate higher structural ordering in Est-6 than in psiEst-6, in accordance with expectations if psiEst-6 is indeed a pseudogene. Taking into account that the function of psiEst-6 is not known (but could exist) and following the terminology of J. Brosius and S. J. Gould, we suggest that the term "potogene" may be appropriate for psiEst-6, indicating that it is a potential gene that may have acquired some distinctive but unknown function.  (+info)

Liver receptor homolog 1 controls the expression of carboxyl ester lipase. (55/410)

The orphan nuclear receptor liver receptor homolog 1 (LRH-1) plays a central role in cholesterol homeostasis by regulating a number of hepatic and intestinal genes critical for reverse cholesterol transport and bile acid homeostasis. Herein, we describe the identification of carboxyl ester lipase (CEL) as a novel target of LRH-1 in pancreas, a tissue in which LRH-1 is abundantly expressed. In situ hybridization and gene expression studies demonstrate that both LRH-1 and CEL are co-expressed and confined to the exocrine pancreas. LRH-1 interacts with a consensus LRH-1 response element in the human CEL promoter, which is perfectly conserved in the rat gene, and induces CEL promoter activity in cotransfection assays. As reported for other LRH-1 target genes, the nuclear receptor short heterodimer partner represses LRH-1-induced CEL promoter activity. Chromatin immunoprecipitation demonstrates that binding of LRH-1 to the CEL promoter increases histone H4 acetylation corresponding with the activation of endogenous CEL gene transcription. Our data, identifying CEL as the first pancreatic LRH-1 target gene, indicate that LRH-1 is an important player in enterohepatic cholesterol homeostasis.  (+info)

Vinyl acetate decreases intracellular pH in rat nasal epithelial cells. (56/410)

Vinyl acetate is a synthetic organic ester that has been shown to produce nasal tumors in rats following exposure to 600 ppm in air. The proposed mechanism of action involves the metabolism of vinyl acetate by carboxylesterases and the production of protons leading to cellular acidification. While vinyl acetate-induced decreases in intracellular pH (pHi) have been demonstrated in rat hepatocytes, comparable data from nasal epithelial cells do not exist. Using an in vitro assay system, we have determined the effects of vinyl acetate exposure on pHi in respiratory and olfactory nasal epithelial cells from rats. The respiratory and olfactory epithelial cells were isolated from dissected maxillo- and ethmoturbinates by enzyme digestion. The cells were plated; loaded with the pH-sensitive dye, carboxyseminaphthorhodafluor-1 (SNARF-1); and observed using confocal microscopy. Individual cellular analysis demonstrated that both respiratory and olfactory epithelial cells responded to vinyl acetate exposures with a dose-dependent decrease in pHi. Changes occurred at 100 microM but reached a plateau above 250 microM. Maximal decreases in pHi were 0.3 pH unit in respiratory epithelial cells. While pHi values were normally distributed for the respiratory epithelial cells, the olfactory epithelial cells demonstrated a bimodal distribution, indicating at least two populations of cells, with only one population of cells responding to vinyl acetate. Acidification in these cells did not plateau but continued to increase at 1000 microM. Bis(p-nitrophenyl)phosphate (BNPP), a carboxylesterase inhibitor, was able to attenuate the vinyl acetate-induced decrease in pHi. Data obtained from the isolated cells were validated using tissue explants. These results are consistent with the proposed mode of action for vinyl acetate and supply further data for developing appropriate risk assessments for vinyl acetate exposure.  (+info)