High expression of the second lysine decarboxylase gene, ldc, in Escherichia coli WC196 due to the recognition of the stop codon (TAG), at a position which corresponds to the 33th amino acid residue of sigma38, as a serine residue by the amber suppressor, supD. (73/1854)

Escherichia coli WC196, which was obtained from the strain W3110 by nitrosoguanidine mutagenesis as an overproducer of lysine, produced approximately twenty times more cadaverine than did W3110, and had a twenty fold higher level of rpoS gene product, sigma38, than in W3110. Both WC196 and W3110 had a stop codon (TAG) in rpoS at position which corresponds to the 33th residue of sigma38 protein. In addition, WC196 but not W3110 had a mutation in the gene encoding Ser-tRNA (SerU), called, supD. Analysis of the amino acid sequence of a sigma38 preparation from WC196 showed that the 33th residue of sigma38 is a serine residue. The deltarpoS deltacadA mutant of E. coli W3110 harboring the plasmid containing rpoS, in which the TAG codon was converted to a TCG codon for serine-33 residue of sigma38, expressed a significant amount of Ldc and accumulated a large amount of sigma38. However, the deltarpoS deltacadA mutant of W3110 with the plasmid containing the intact rpoS from W3110 could synthesize neither sigma38 nor Ldc significantly.  (+info)

Susceptibility of calves to challenge with Salmonella typhimurium 4/74 and derivatives harbouring mutations in htrA or purE. (74/1854)

Salmonella typhimurium 4/74 is highly virulent for cattle after oral challenge, causing severe diarrhoea, which is sometimes associated with systemic spread of the micro-organism. Although susceptible to oral challenge, groups of cattle were found to be relatively resistant to subcutaneous challenge with this strain. The virulence of S. typhimurium 4/74 harbouring mutations in htrA and purE was also assessed in cattle. Although S. typhimurium 4/74 htrA and purE are attenuated following oral challenge in mice, cattle were highly susceptible to oral challenge with these mutants. As with the parent S. typhimurium 4/74 strain, cattle exhibited greater susceptibility to oral compared to subcutaneous challenge with S. typhimurium htrA and purE mutants. Following subcutaneous challenge with sublethal levels of S. typhimurium 4/74, calves produced significant levels of antibodies to S. typhimurium soluble extract. No correlation was detected between interferon gamma levels in sera and susceptibility to infection by any route. The concentrations of the acute-phase-associated protein haptoglobin were increased in the sera of five of six cattle inoculated subcutaneously, although increases in concentration were smaller in cattle inoculated orally.  (+info)

Repression of diaminopimelic acid decarboxylase in Escherichia coli: gene dosage effects and escape synthesis. (75/1854)

Gene dosage and escape synthesis experiments support the hypothesis that diaminopimelate decarboxylase repression by lysine involves a repressor molecule in a negative control system.  (+info)

Escherichia coli glyoxalate carboligase. Properties and reconstitution with 5-deazaFAD and 1,5-dihydrodeazaFADH2. (76/1854)

Glyoxalate carboligase (EC 4.1.1.47) has been purified to electrophoretic homogeneity from Escherichia coli. The enzyme was found to be a dimer of subunits of identical molecular weight of 68,000. Resolution of the holoenzyme into apoenzyme and FAD led to a dissociation of the dimer into monomers. The apoenzyme could be reconsitituted to full catalytic activity with FAD or the flavin coenzyme analogue 5-deazaFAD. Reconstitution of the apoenzyme with the reduced flavin analogue 1,5-dihydro-5-deazaFADH2 led to the recovery of 50% of enzymatic activity. The reconstitution of apoglyoxalate carboligase with all three coenzymes followed Michaelis-Menten kinetics with Km values of 0.25, 0.74, and 0.72 muM for FAD deazaFAD, and deazaFADH2, respectively.  (+info)

Inducible metabolism of phenolic acids in Pediococcus pentosaceus is encoded by an autoregulated operon which involves a new class of negative transcriptional regulator. (77/1854)

Pediococcus pentosaceus displays a substrate-inducible phenolic acid decarboxylase (PAD) activity on p-coumaric acid. Based on DNA sequence homologies between the three PADs previously cloned, a DNA probe of the Lactobacillus plantarum pdc gene was used to screen a P. pentosaceus genomic library in order to clone the corresponding gene of this bacteria. One clone detected with this probe displayed a low PAD activity. Subcloning of this plasmid insertion allowed us to determine the part of the insert which contains a 534-bp open reading frame (ORF) coding for a 178-amino-acid protein presenting 81.5% of identity with L. plantarum PDC enzyme. This ORF was identified as the padA gene. A second ORF was located just downstream of the padA gene and displayed 37% identity with the product of the Bacillus subtilis yfiO gene. Subcloning, transcriptional analysis, and expression studies with Escherichia coli of these two genes under the padA gene promoter, demonstrated that the genes are organized in an autoregulated bicistronic operonic structure and that the gene located upstream of the padA gene encodes the transcriptional repressor of the padA gene. Transcription of this pad operon in P. pentosaceus is acid phenol dependent.  (+info)

Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylases from eukaryotes. (78/1854)

Lysine decarboxylase (LDC; EC 4.1.1.18) from Selenomonas ruminantium comprises two identical monomeric subunits of 43 kDa and has decarboxylating activities toward both L-lysine and L-ornithine with similar K(m) and V(max) values (Y. Takatsuka, M. Onoda, T. Sugiyama, K. Muramoto, T. Tomita, and Y. Kamio, Biosci. Biotechnol. Biochem. 62:1063-1069, 1999). Here, the LDC-encoding gene (ldc) of this bacterium was cloned and characterized. DNA sequencing analysis revealed that the amino acid sequence of S. ruminantium LDC is 35% identical to those of eukaryotic ornithine decarboxylases (ODCs; EC 4.1.1.17), including the mouse, Saccharomyces cerevisiae, Neurospora crassa, Trypanosoma brucei, and Caenorhabditis elegans enzymes. In addition, 26 amino acid residues, K69, D88, E94, D134, R154, K169, H197, D233, G235, G236, G237, F238, E274, G276, R277, Y278, K294, Y323, Y331, D332, C360, D361, D364, G387, Y389, and F397 (mouse ODC numbering), all of which are implicated in the formation of the pyridoxal phosphate-binding domain and the substrate-binding domain and in dimer stabilization with the eukaryotic ODCs, were also conserved in S. ruminantium LDC. Computer analysis of the putative secondary structure of S. ruminantium LDC showed that it is approximately 70% identical to that of mouse ODC. We identified five amino acid residues, A44, G45, V46, P54, and S322, within the LDC catalytic domain that confer decarboxylase activities toward both L-lysine and L-ornithine with a substrate specificity ratio of 0.83 (defined as the k(cat)/K(m) ratio obtained with L-ornithine relative to that obtained with L-lysine). We have succeeded in converting S. ruminantium LDC to form with a substrate specificity ratio of 58 (70 times that of wild-type LDC) by constructing a mutant protein, A44V/G45T/V46P/P54D/S322A. In this study, we also showed that G350 is a crucial residue for stabilization of the dimer in S. ruminantium LDC.  (+info)

Isolation and characterization of two tryptophan biosynthetic enzymes, indoleglycerol phosphate synthase and phosphoribosyl anthranilate isomerase, from Bacillus subtilis. (79/1854)

Two of the enzymes responsible for tryptophan biosynthesis in Bacillus subtilis have been extensively purified. These proteins are indole-3-glycerol phosphate synthase and N-(5'-phosphoribosyl) anthranilate isomerase. By comparison to the non-differentiating enteric bacteria in which these two enzymes are fused into a single polypeptide, the isolation of the indoleglycerol phosphate synthase and phosphoribosyl anthranilate isomerase from B. subtilis has demonstrated that the two proteins are separate species in this organism. The two enzymes were clearly separable by anion-exchange chromatography without any significant loss of activity. Molecular weights were determined for both enzymes by gel filtration and sodium dodecyl sulfate-slab gel electrophoresis, and indicated that the indoleglycerol phosphate synthase is the slightly larger of the two proteins. The minimum molecular weight for indoleglycerol phosphate synthase was 23,500, and that for phosphoribosyl anthranilate isomerase was 21,800. Both enzymes have been examined as to conditions necessary to achieve maximal activity of their individual functions and to maintain that activity.  (+info)

S-adenosylmethionine decarboxylase from baker's yeast. (80/1854)

1. S-Adenosyl-L-methionine decarboxylase (S-adenosyl-L-methionine carboxy-lyase, EC 4.1.1.50) was purified more than 1100-fold from extracts of Saccharomyces cerevisiae by affinity chromatography on columns of Sepharose containing covalently bound methylglyoxal bis(guanylhydrazone) (1,1'[(methylethanediylidene)dinitrilo]diguanidine) [Pegg, (1974) Biochem J. 141, 581-583]. The final preparation appeared to be homogeneous on polyacrylamide-gel electrophoresis at pH 8.4. 2. S-Adenosylmethionine decarboxylase activity was completely separated from spermidine synthase activity [5'-deoxyadenosyl-(5'),3-aminopropyl-(1),methylsulphonium-salt-putrescine 3-aminopropyltransferase, EC 2.5.1.16] during the purification procedure. 3. Adenosylmethionine decarboxylase activity from crude extracts of baker's yeast was stimulated by putrescine, 1,3-diamino-propane, cadaverine (1,5-diaminopentane) and spermidine; however, the purified enzyme, although still stimulated by the diamines, was completely insensitive to spermidine. 4. Adenosylmethionine decarboxylase has an apparent Km value of 0.09 mM for adenosylmethionine in the presence of saturating concentrations of putrescine. The omission of putrescine resulted in a five-fold increase in the apparent Km value for adenosylmethionine. 5. The apparent Ka value for putrescine, as the activator of the reaction, was 0.012 mM. 6. Methylglyoxal bis(guanylhydrazone) and S-methyladenosylhomocysteamine (decarboxylated adenosylmethionine) were powerful inhibitors of the enzyme. 7. Adenosylmethionine decarboxylase from baker's yeast was inhibited by a number of conventional carbonyl reagents, but in no case could the inhibition be reversed with exogenous pyridoxal 5'-phosphate.  (+info)