Effect of uncouplers on "downhill" beta-galactoside transport in energy-depleted cells of Escherichia coli. (57/884)

Galactoside permease-containing cells of Escherichia coli can be depleted of energy reserves so that the "downhill" cellular hydrolysis of o-nitrophenyl-beta-d-galactopyranoside (ONPG) no longer takes place. Treatment of such energy-depleted cells with proton-conducting agents such as carbonylcyanide m-chlorophenylhydrazone results in stimulation of ONPG transport. The same agents lower transport of non-energy-depleted cells towards the same levels that result from stimulation of the energy depleted cells. Of course, these agents prevent "uphill" accumulation against a concentration gradient under all conditions. Since uncouplers allow normal and energy-depleted cells to assume the same facilitated transport capability, these results lend support to the chemiosmotic hypothesis of Mitchell that comigration of charge is necessary for the transport of neutral galactosides. Our results imply that a potential favorable to transport is maintained by metabolism in non-energy-depleted cells, whereas an unfavorable potential is developed in the initial instant of time when energy-depleted cells are given ONPG.  (+info)

Mutations in a tRNA import signal define distinct receptors at the two membranes of Leishmania mitochondria. (58/884)

Nucleus-encoded tRNAs are selectively imported into the mitochondrion of Leishmania, a kinetoplastid protozoan. An oligoribonucleotide constituting the D stem-loop import signal of tRNA(Tyr)(GUA) was efficiently transported into the mitochondrial matrix in organello as well as in vivo. Transfer through the inner membrane could be uncoupled from that through the outer membrane and was resistant to antibody against the outer membrane receptor TAB. A number of mutations in the import signal had differential effects on outer and inner membrane transfer. Some mutants which efficiently traversed the outer membrane were unable to enter the matrix. Conversely, restoration of the loop-closing GC pair in reverse resulted in reversion of transfer through the inner, but not the outer, membrane, and binding of the RNA to the inner membrane was restored. These experiments indicate the presence at the two membranes of receptors with distinct specificities which mediate stepwise transfer into the mitochondrial matrix. The combination of oligonucleotide mutagenesis and biochemical fractionation may provide a general tool for the identification of tRNA transport factors.  (+info)

Agonist-evoked mitochondrial Ca2+ signals in mouse pancreatic acinar cells. (59/884)

In the present study we have investigated cytosolic and mitochondrial Ca(2+) signals in isolated mouse pancreatic acinar cells double-loaded with the fluorescent probes fluo-3 and rhod-2. Stimulation of pancreatic acinar cells with 500 nm acetylcholine caused release of Ca(2+) from intracellular stores and produced cytosolic Ca(2+) signals in form of Ca(2+) waves propagating from the luminal to the basal cell pole. The increase in the cytosolic Ca(2+) concentration was followed by Ca(2+) uptake into mitochondria. Between onset of cytosolic and mitochondrial Ca(2+) signals there was a delay of 10.7 +/- 0.4 s. Ca(2+) uptake into mitochondria could be inhibited with Ruthenium Red and carbonyl cyanide m-chlorophenylhydrazone, whereas 2,5-di-tert-butylhydroquinone, which inhibits sarco(endo)plasmic reticulum Ca(2+) ATPases, did not prevent Ca(2+) accumulation in mitochondria. Carbonyl cyanide m-chlorophenylhydrazone-induced Ca(2+) release from mitochondria could only be observed after a preceding stimulation of the cell with a physiological agonist or by treatment with 2, 5-di-tert-butylhydroquinone, indicating that under resting conditions mitochondria do not contain releasable Ca(2+) ions. Analysis of the propagation rate of acetylcholine-induced Ca(2+) waves revealed that inhibition of mitochondrial Ca(2+) uptake did not accelerate spreading of cytosolic Ca(2+) signals. Our experiments indicate that in the early phase of secretagogue-induced Ca(2+) signals, mitochondria behave as passive Ca(2+)-buffering elements and do not actively suppress spreading of Ca(2+) signals in pancreatic acinar cells.  (+info)

On the kinetics of voltage formation in purple membranes of Halobacterium salinarium. (60/884)

The kinetics of the bacteriorhodopsin photocycle, measured by voltage changes in a closed membrane system using the direct electrometrical method (DEM) of Drachev, L.A., Jasaitus, A.A., Kaulen, A.D., Kondrashin, A.A., Liberman, E.A., Nemecek, I.B., Ostroumov, S.A., Semenov, Yu, A. & Skulachev, V.P. (1974) Nature 249, 321-324 are sixfold slower than the kinetics obtained in optical studies with suspensions of purple membrane patches. In this study, we have investigated the reasons for this discrepancy. In the presence of the uncouplers carbonyl cyanide m-chlorophenylhydrazone or valinomycin, the rates in the DEM system are similar to the rates in suspensions of purple membrane. Two alternative explanations for the effects of uncouplers were evaluated: (a) the 'back-pressure' of the Deltamicro;H+ slows the kinetic steps leading to its formation, and (b) the apparent difference between the two systems is due to slow major electrogenic events that produce little or no change in optical absorbance. In the latter case, the uncouplers would decrease the RC time constant for membrane capacitance leading to a quicker discharge of voltage and concomitant decrease in photocycle turnover time. The experimental results show that the primary cause for the slower kinetics of voltage changes in the DEM system is thermodynamic back-pressure as described by Westerhoff, H.V. & Dancshazy, Z. (1984) Trends Biochem. Sci. 9, 112-117.  (+info)

Mitochondrial electron transfer in the wheat pathogenic fungus Septoria tritici: on the role of alternative respiratory enzymes in fungicide resistance. (61/884)

Certain phytopathogenic fungi are able to express alternative NADH- and quinol-oxidising enzymes that are insensitive to inhibitors of the mitochondrial respiratory Complexes I and III. To assess the extent to which such enzymes confer tolerance to respiration-targeted fungicides, an understanding of mitochondrial electron transfer in these species is required. An isolation procedure has been developed which results in intact, active and coupled mitochondria from the wheat pathogen Septoria tritici, as evidenced by morphological and kinetic data. Exogenous NADH, succinate and malate/glutamate are readily oxidised, the latter activity being only partly (approx. 70%) sensitive to rotenone. Of particular importance was the finding that azoxystrobin (a strobilurin fungicide) potently inhibits fungal respiration at the level of Complex III. In some S. tritici strains investigated, a small but significant part of the respiratory activity (approx. 10%) is insensitive to antimycin A and azoxystrobin. Such resistant activity is sensitive to octyl gallate, a specific inhibitor of the plant alternative oxidase. This enzyme, however, could not be detected immunologically. On the basis of the above findings, a conceptual mitochondrial electron transfer chain is presented. Data are discussed in terms of developmental and environmental regulation of the composition of this chain.  (+info)

Stimulation-evoked increases in cytosolic [Ca(2+)] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent. (62/884)

Increases in cytosolic [Ca(2+)] evoked by trains of action potentials (20-100 Hz) were recorded from mouse and lizard motor nerve terminals filled with a low-affinity fluorescent indicator, Oregon Green BAPTA 5N. In mouse terminals at near-physiological temperatures (30-38 degrees C), trains of action potentials at 25-100 Hz elicited increases in cytosolic [Ca(2+)] that stabilized at plateau levels that increased with stimulation frequency. Depolarization of mitochondria with carbonylcyanide m-chlorophenylhydrazone (CCCP) or antimycin A1 caused cytosolic [Ca(2+)] to rise to much higher levels during stimulation. Thus, mitochondrial Ca(2+) uptake contributes importantly to limiting the rise of cytosolic [Ca(2+)] during repetitive stimulation. In mouse terminals, the stimulation-induced increase in cytosolic [Ca(2+)] was highly temperature-dependent over the range 18-38 degrees C, with greater increases at lower temperatures. At the lower temperatures, application of CCCP continued to depolarize mitochondria but produced a much smaller increase in the cytosolic [Ca(2+)] transient evoked by repetitive stimulation. This result suggests that the larger amplitude of the stimulation-induced cytosolic [Ca(2+)] transient at lower temperatures was attributable in part to reduced mitochondrial Ca(2+) uptake. In contrast, the stimulation-induced increases in cytosolic [Ca(2+)] measured in lizard motor terminals showed little or no temperature-dependence over the range 18-33 degrees C.  (+info)

Membrane photopotential generation by interfacial differences in the turnover of a photodynamic reaction. (63/884)

The adsorption of a membrane-impermeable photosensitizer to only one membrane leaflet is found to trigger a localized photodynamic reaction; i.e., the amount of carbonyl cyanide m-chlorophenylhydrazone (CCCP) molecules damaged in the leaflet facing the photosensitizer is roughly identical to the total amount of CCCP inactivated. Whereas the latter quantity is assessed from the drop in membrane conductivity G, the former is evaluated from the photopotential phi that is proportional to the interfacial concentration difference of the uncoupler. Localized photodestruction is encountered by CCCP diffusion to the site of photodamage. A simple model that accounts for both photoinhibition and diffusion predicts the dependence of the photopotential on light intensity, buffer capacity, and pH of the medium. It is concluded that only a limited amount of the reactive oxygen species responsible for CCCP photodamage diffuses across the membrane. If the concentration of reactive oxygen species is decreased by addition of NaN(3) or by substituting aqueous oxygen for argon, phi is inhibited. If, in contrast, their life time is increased by substitution of H(2)O for D(2)O, phi increases.  (+info)

Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli. (64/884)

The effects of various energy poisons on oxidation of respiratory substrate, synthesis of cellular ATP, and energy transformation reaction in intact Escherichia coli cells were studied systematically. Various mutants were, therefore, used in which specific functions in the energy-transducing reactions were defective or altered. The energy poisons examined were: sodium azide. DPPA and azidebenzenes which are inhibitors of respiratory-chain phosphorylation, SF6847, and CCCP which are known to be uncouplers, zinc sulfate which is an inhibitor for certain dehydrogenases, and sodium arsenate and sodium fluoride which are inhibitors of glycolytic synthesis of ATP. The preferential inhibitions occurred in the oxidation reactions with certain respiratory substrates by energy poisons used. DPPA inhibited glycerol oxidation much more strongly than succinate oxidation. However, DPPA could inhibit the oxidation of both glycerol 3-phosphate and succinate by membrane fraction strongly while the oxidation of NADH and D-lactate slightly. It inhibited glycerol 3-phosphate dehydrogenase [EC 1.1.2.1] strongly as well as succinate dehydrogenase [EC 1.3.99.1],.but not D-lactate dehydrogenase of membrane fraction. MAB and other azidebenzene derivatives inhibited succinate oxidation preferentially. SF6847 and CCCP inhibited succinate oxidation strongly, while sodium azide inhibited it weakly and these three poisons were less inhibitory for glycerol oxidation. DPPA, sodium azide, SF6847, and CCCP inhibited the synthesis of ATP coupled with respiration but not with glycolysis. Zinc sulfate inhibited the cellular ATP synthesis coupled with either respiration or glycolysis.  (+info)