Erythroid pyrimidine 5'-nucleotidase: cloning, developmental expression, and regulation by cAMP and in vivo hypoxia. (25/207)

A characteristic process of terminal erythroid differentiation is the degradation of ribosomal RNA into mononucleotides. The pyrimidine mononucleotides can be dephosphorylated by pyrimidine 5'-nucleotidase (P5N-I). In humans, a lack of this enzyme causes hemolytic anemia with ribosomal structures and trinucleotides retained in the red blood cells (RBCs). Although the protein/nucleotide sequence of P5N-I is known in mammals, the onset and regulation of P5N-I during erythroid maturation is unknown. However, in circulating chicken embryonic RBCs, the enzyme is induced together with carbonic anhydrase (CAII) and 2,3-bisphosphoglycerate (2,3-BPG) by norepinephrine (NE) and adenosine, which are released by the embryo under hypoxic conditions. Here, we present the chicken P5N-I sequence and the gene expression of P5N-I during RBC maturation; the profile of gene expression follows the enzyme activity with a rise between days 13 and 16 of embryonic development. The p5n-I expression is induced (1) in definitive but not primitive RBCs by stimulation of beta-adrenergic/adenosine receptors, and (2) in definitive RBCs by hypoxic incubation of the chicken embryo. Since embryonic RBCs increase their hemoglobin-oxygen affinity by degradation of nucleotides such as uridine triphosphate (UTP) and cytidine triphosphate (CTP), the induction of p5n-I expression can be seen as an adaptive response to hypoxia.  (+info)

Deficient HCO3- transport in an AE1 mutant with normal Cl- transport can be rescued by carbonic anhydrase II presented on an adjacent AE1 protomer. (26/207)

Cl-/HCO3- exchange activity mediated by the AE1 anion exchanger is reduced by carbonic anhydrase II (CA2) inhibition or by prevention of CA2 binding to the AE1 C-terminal cytoplasmic tail. This type of AE1 inhibition is thought to represent reduced metabolic channeling of HCO3- to the intracellular HCO3- binding site of AE1. To test the hypothesis that CA2 binding might itself allosterically activate AE1 in Xenopus oocytes, we compared Cl-/Cl- and Cl-/HCO3- exchange activities of AE1 polypeptides with truncation and missense mutations in the C-terminal tail. The distal renal tubular acidosis-associated AE1 901X mutant exhibited both Cl-/Cl- and Cl-/HCO3- exchange activities. In contrast, AE1 896X, 891X, and AE1 missense mutants in the CA2 binding site were inactive as Cl-/HCO3- exchangers despite exhibiting normal Cl-/Cl- exchange activities. Co-expression of CA2 enhanced wild-type AE1-mediated Cl-/HCO3- exchange, but not Cl-/Cl- exchange. CA2 co-expression could not rescue Cl-/HCO3- exchange activity in AE1 mutants selectively impaired in Cl-/HCO3- exchange. However, co-expression of transport-incompetent AE1 mutants with intact CA2 binding sites completely rescued Cl-/HCO3- exchange by an AE1 missense mutant devoid of CA2 binding, with activity further enhanced by CA2 co-expression. The same transport-incompetent AE1 mutants failed to rescue Cl-/HCO3- exchange by the AE1 truncation mutant 896X, despite preservation of the latter's core CA2 binding site. These data increase the minimal extent of a functionally defined CA2 binding site in AE1. The inter-protomeric rescue of HCO3- transport within the AE1 dimer shows functional proximity of the C-terminal cytoplasmic tail of one protomer to the anion translocation pathway in the adjacent protomer within the AE1 heterodimer. The data strongly support the hypothesis that an intact transbilayer anion translocation pathway is completely contained within an AE1 monomer.  (+info)

The ABRF-MIRG'02 study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction. (27/207)

Fully characterizing the interactions involving biomolecules requires information on the assembly state, affinity, kinetics, and thermodynamics associated with complex formation. The analytical technologies often used to measure biomolecular interactions include analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR). In order to evaluate the capabilities of core facilities to implement these technologies, the Association of Biomolecular Resource Facilities (ABRF) Molecular Interactions Research Group (MIRG) developed a standardized model system and distributed it to a panel of AUC, ITC, and SPR operators. The model system was composed of a well-characterized enzyme-inhibitor pair, namely bovine carbonic anhydrase II (CA II) and 4-carboxybenzenesulfonamide (CBS). Study participants were asked to measure one or more of the following: (1) the molecular mass, homogeneity, and assembly state of CA II by AUC; (2) the affinity and thermodynamics for complex formation by ITC; and (3) the affinity and kinetics of complex formation by SPR. The results from this study provide a benchmark for comparing the capabilities of individual laboratories and for defining the utility of the different instrumentation.  (+info)

Regulation of the human NBC3 Na+/HCO3- cotransporter by carbonic anhydrase II and PKA. (28/207)

Human NBC3 is an electroneutral Na(+)/HCO(3)(-) cotransporter expressed in heart, skeletal muscle, and kidney in which it plays an important role in HCO(3)(-) metabolism. Cytosolic enzyme carbonic anhydrase II (CAII) catalyzes the reaction CO(2) + H(2)O left arrow over right arrow HCO(3)(-) + H(+) in many tissues. We investigated whether NBC3, like some Cl(-)/HCO(3)(-) exchange proteins, could bind CAII and whether PKA could regulate NBC3 activity through modulation of CAII binding. CAII bound the COOH-terminal domain of NBC3 (NBC3Ct) with K(d) = 101 nM; the interaction was stronger at acid pH. Cotransfection of HEK-293 cells with NBC3 and CAII recruited CAII to the plasma membrane. Mutagenesis of consensus CAII binding sites revealed that the D1135-D1136 region of NBC3 is essential for CAII/NBC3 interaction and for optimal function, because the NBC3 D1135N/D1136N retained only 29 +/- 22% of wild-type activity. Coexpression of the functionally dominant-negative CAII mutant V143Y with NBC3 or addition of 100 microM 8-bromoadenosine to NBC3 transfected cells reduced intracellular pH (pH(i)) recovery rate by 31 +/- 3, or 38 +/- 7%, respectively, relative to untreated NBC3 transfected cells. The effects were additive, together decreasing the pH(i) recovery rate by 69 +/- 12%, suggesting that PKA reduces transport activity by a mechanism independently of CAII. Measurements of PKA-dependent phosphorylation by mass spectroscopy and labeling with [gamma-(32)P]ATP showed that NBC3Ct was not a PKA substrate. These results demonstrate that NBC3 and CAII interact to maximize the HCO(3)(-) transport rate. Although PKA decreased NBC3 transport activity, it did so independently of the NBC3/CAII interaction and did not involve phosphorylation of NBC3Ct.  (+info)

Complementation of the yeast deletion mutant DeltaNCE103 by members of the beta class of carbonic anhydrases is dependent on carbonic anhydrase activity rather than on antioxidant activity. (29/207)

In recent years, members of the beta class of CAs (carbonic anhydrases) have been shown to complement Delta NCE103, a yeast strain unable to grow under aerobic conditions. The activity required for complementation of Delta NCE103 by tobacco chloroplast CA was studied by site-directed mutagenesis. E196A (Glu196-->Ala), a mutated tobacco CA with low levels of CA activity, complemented Delta NCE103. To determine whether restoration of Delta NCE103 was due to residual levels of CA activity or whether it was related to previously proposed antioxidant activity of CAs [Gotz, Gnann and Zimmermann (1999) Yeast 15, 855-864], additional complementation analysis was performed using human CAII, an alpha CA structurally unrelated to the beta class of CAs to which the tobacco protein belongs. Human CAII complemented Delta NCE103, strongly arguing that CA activity is responsible for the complementation of Delta NCE103. Consistent with this conclusion, recombinant NCE103 synthesized in Escherichia coli shows CA activity, and Delta NCE103 expressing the tobacco chloroplast CA exhibits the same sensitivity to H2O2 as the wild-type strain.  (+info)

Reshaping the folding energy landscape by chloride salt: impact on molten-globule formation and aggregation behavior of carbonic anhydrase. (30/207)

During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.  (+info)

Effects of acetazolamide and 4-aminopyridine on CO2-induced slowly adapting pulmonary stretch receptor inhibition in rats. (31/207)

Inhibitory responses of slowly adapting pulmonary stretch receptor (SAR) activity to CO(2) inhalation (maximal tracheal CO(2) concentration ranging from 9.5 to 12.5%) for approximately 60 s were examined before and after administration of acetazolamide (a carbonic anhydrase inhibitor) or 4-aminopyridine (4-AP, a K(+) channel blocker). The experiments were performed in 35 anesthetized, artificially ventilated rats after unilateral vagotomy. Sixty-eight of eighty-four SARs were inhibited by CO(2) inhalation. The SAR inhibition was attenuated by pretreatment with either acetazolamide (20 mg/kg, n = 10) or 4-AP (0.7 and 2.0 mg/kg, n = 10). In other series of experiments, stainings to show the existence of carbonic anhydrase (CA) enzymatic reaction were not found in the smooth muscle of either extrapulmonary or intrapulmonary bronchi. Protein gene product 9.5 (PGP 9.5)-immunoreactive SAR terminals to form leaflike extensions were found in the bronchioles at different diameters and were smooth-muscle-related receptors. But in the same sections, CA isozyme II-like (erythrocyte CA) immunoreactive SAR terminals were not identified. These results suggest that CO(2)-induced inhibition of SARs may be involved in the CA-dependent CO(2) hydration in addition to the activation of 4-AP sensitive K(+) currents.  (+info)

Molecular mechanism of kNBC1-carbonic anhydrase II interaction in proximal tubule cells. (32/207)

We have recently shown that carbonic anhydrase II (CAII) binds in vitro to the C-terminus of the electrogenic sodium bicarbonate cotransporter kNBC1 (kNBC1-ct). In the present study we determined the molecular mechanisms for the interaction between the two proteins and whether kNBC1 and CAII form a transport metabolon in vivo wherein bicarbonate is transferred from CAII directly to the cotransporter. Various residues in the C-terminus of kNBC1 were mutated and the effect of these mutations on both the magnitude of CAII binding and the function of kNBC1 expressed in mPCT cells was determined. Two clusters of acidic amino acids, L(958)DDV and D(986)NDD in the wild-type kNBC1-ct involved in CAII binding were identified. In both acidic clusters, the first aspartate residue played a more important role in CAII binding than others. A significant correlation between the magnitude of CAII binding and kNBC1-mediated flux was shown. The results indicated that CAII activity enhances flux through the cotransporter when the enzyme is bound to kNBC1. These data are the first direct evidence that a complex of an electrogenic sodium bicarbonate cotransporter with CAII functions as a transport metabolon.  (+info)