1-Methyladenine production from ATP by starfish ovarian follicle cells. (49/5742)

1-Methyladenine (1-MeAde), the oocyte maturation-inducing substance in starfish, is produced by ovarian follicle cells upon stimulation with a gonad-stimulating substance (GSS) released from the radial nerves. We have shown previously that GSS causes a reduction in the intracellular levels of ATP coincident with 1-MeAde production. The present study examined whether the adenine molecule of 1-MeAde is directly derived from ATP. When isolated follicle cells from the starfish Asterina pectinifera were preloaded with [U-14C]adenine or [U-14C]adenosine, there was an increase in the intracellular levels of radiolabeled adenine nucleotides, particularly ATP. Following further incubation with GSS, the intracellular levels of radiolabeled ATP decreased, concomitant with a marked increase in the levels of [14C]1-MeAde in the medium. The amount of ATP consumed under the influence of GSS was similar to the amount of 1-MeAde produced. However, there was no change in the levels of ADP and AMP regardless of the presence or absence of GSS. These findings strongly suggest that 1-MeAde is synthesized from ATP as a substrate in follicle cells under the influence of GSS. Furthermore, using [methyl-3H]methionine, the methyl group of 1-MeAde was found to be derived from methionine. Thus GSS appears to stimulate the synthesis of 1-MeAde from ATP via the methylation process in starfish ovarian follicle cells.  (+info)

Pharmacokinetics of the 8-methoxyquinolone, moxifloxacin: tissue distribution in male rats. (50/5742)

BAY 12-8039 (moxifloxacin-HCl) and 14C-labelled BAY 12-8039 were administered to male rats as single i.v. and oral doses of 4.6 and 5.0 mg/kg bodyweight respectively. The distribution of substance-associated radioactivity in the body was investigated by whole-body autoradiography. The concentrations of the unchanged compound in plasma, skin suction blister fluid and lung tissue were determined by HPLC. Whole-body autoradiography revealed distinctly higher concentrations of radioactivity in the gastrointestinal tract, urinary bladder and in most organs and tissues (e.g. kidneys, liver, spleen, lungs, various glands, cartilaginous tissues and in melanin-containing structures located in the eye, meninges and hair follicles of pigmented skin) than in blood. Radioactivity crossed the blood-brain barrier only to a small extent. The results show a high tissue affinity and a rapid and homogeneous distribution of radioactivity from blood to organs or tissues. No relevant difference in the distribution of radioactivity was found following i.v. and oral administration. After i.v. and oral dosing similar concentrations of the unchanged compound were determined in skin suction blister fluid and plasma. The concentrations of the unchanged compound in lung tissue were about three times higher than those in plasma following both i.v. and oral administration. The concentration-time courses for moxifloxacin in plasma and lung tissue were parallel.  (+info)

3'-Azido-3'-deoxythymidine reduces the rate of transferrin receptor endocytosis in K562 cells. (51/5742)

K562 cells, exposed for at least 24 h to 5 microM 3'-azido-3'-deoxythymidine (AZT), gave rise to an overall increase in the number of cell surface transferrin binding receptors (18-20%). This effect was ascertained either with binding experiments by using 125I-transferrin and with immunoprecipitation by using a specific monoclonal antibody against the transferrin receptor. At higher AZT concentrations (20 and 40 microM), a further increase was found, that is, up to 23% by binding experiments and up to 110% by immunoprecipitation. However, Scatchard analysis of the binding data indicated that although the number of cell surface transferrin receptors increased, the affinity of transferrin for its receptor did not change (Ka=4.0x108 M). Surprisingly, immunoprecipitation of total receptor molecules showed that the synthesis of receptor was not enhanced by the drug treatment. The effect of AZT on transferrin internalization and receptor recycling was also investigated. In this case, data indicated that the increase in the number of receptors at the cell surface was probably due to a slowing down of endocytosis rate rather than to an increased recycling rate of the receptor to cell surface. In fact, the time during which half the saturated amount of transferrin had been endocytosed (t1/2) was 2.15 min for control cells and 3.41, 3.04, and 3.74 min for 5, 20, and 40 microM AZT-treated cells, respectively. Conversely, recycling experiments did not show any significant differences between control and treated cells. A likely mechanism through which AZT could interfere with the transferrin receptor trafficking, together with the relevance of our findings, is extensively discussed.  (+info)

Enhanced uptake of [11C]TPMP in canine brain tumor: a PET study. (52/5742)

In vitro studies have demonstrated the membrane potential-dependent enhanced uptake of phosphonium salts, including [3H]triphenylmethylphosphonium (TPMP), into mitochondria of carcinoma and glioma-derived tumor cells, suggesting the potential use of phosphonium salts as tracers for tumor imaging. This study characterizes the in vivo uptake of [11C]TPMP in canine brain glioma using PET. METHODS: Dynamic paired PET studies of [11C]TPMP followed by [68Ga]ethylenediaminetetraacetic acid (EDTA) were performed 4 d before and 9 d after tumor cell inoculation. Graphical analysis was used to evaluate [11C]TPMP retention in tumor tissue. Distribution of tracer uptake was compared with tumor histological sections. RESULTS: [11C]TPMP exhibited enhanced uptake and prolonged retention in tumor cells. Patlak plot was linear over the 20- to 95-min postinjection period (r = 0.97 +/- 0.1). [68Ga]EDTA exhibited a gradual washout from the tumor tissue. The tumor-to-normal brain uptake ratio at 55 to 95 min postinjection was 47.5 for [11C]TPMP and 8.1 for [68Ga]EDTA. Qualitative comparison with histological sections indicated that [11C]TPMP enhanced uptake was restricted to the tumor area. CONCLUSION: The enhanced uptake and prolonged retention in tumor suggest [11C]TPMP as a promising means for imaging of gliomas in dogs. The need for studies in humans is indicated.  (+info)

Inhibitory effect of KW-3902, an adenosine A(1) receptor antagonist, on p-aminohippurate transport in OK cells. (53/5742)

KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine) is a novel potent and selective adenosine A(1) receptor antagonist. We examined the effect of KW-3902 on p-aminohippurate (PAH) transport in opossum kidney (OK) epithelial cells. Pretreatment for 3 h with KW-3902 inhibited the transcellular transport of PAH across OK cell monolayers from the basal to the apical side. The uptake of PAH across the basolateral membrane of OK cells was inhibited by KW-3902 pretreatment in a time- and concentration-dependent manner. A kinetic analysis revealed that the inhibitory effect of KW-3902 on the basolateral PAH uptake was due to an increase in the Michaelis constant (K(m)) as well as a decrease in the maximum uptake rate (V(max)), showing that the inhibition was a mixed type. Pretreatment with adenosine deaminase or 8-cyclopentyl-1,3-dipropylxanthine, another selective adenosine A(1) receptor antagonist, also decreased the basolateral PAH uptake. KW-3902 pretreatment had no effect on the concentration of intracellular alpha-ketoglutarate which exchanges for PAH across the basolateral membrane of OK cells. These results suggest that KW-3902 has an inhibitory effect on PAH transport in OK epithelial cells.  (+info)

Decreased availability of GDP-L-fucose in a patient with LAD II with normal GDP-D-mannose dehydratase and FX protein activities. (54/5742)

Leukocyte adhesion deficiency type II (LAD II) is caused by a disorder in the metabolism of GDP-L-fucose, which causes hypofucosylation of glycoconjugates. This study analyzes a newly identified LAD II patient who shows the same severe hypofucosylation of glycoconjugates as the other described patients. However, in vitro assays of cytosolic extracts from leukocytes and fibroblasts of the patient demonstrated a normal GDP-L-fucose biosynthesis from GDP-D-mannose. Analysis of the two enzymes involved in the pathway, GDP-D-mannose 4,6-dehydratase and FX protein, revealed normal numbers of transcripts without any detectable mutations within the coding regions of either gene. In contrast to previously published observations [Sturla et al. (1998) FEBS Lett. 429, 274-278], the major pathway of GDP-L-fucose synthesis can be normal in LAD II.  (+info)

Cerebral blood flow responses to somatosensory stimulation are unaffected by scopolamine in unanesthetized rat. (55/5742)

Studies with positron-emission tomography have indicated that muscarinic acetylcholine receptors may be involved in the mechanism of enhancement of cerebral blood flow (CBF) by neuronal functional activation. We examined the effects of muscarinic receptor blockade by scopolamine on the local CBF responses to vibrissal stimulation in the whisker-to-barrel cortex sensory pathway in unanesthetized rats. Local CBF was measured by the quantitative autoradiographic [(14)C]iodoantipyrine method. Scopolamine (0.4 or 0.8 mg/kg) was injected i.v. 30 min before measurement of local CBF; control rats received equivalent volumes of physiological saline. Vibrissae on the left side of the face were stroked continuously throughout the 1-min period of measurement of CBF. Local CBF was determined bilaterally in four structures of the pathway, i.e., spinal and principal sensory trigeminal nuclei, ventral posteromedial thalamic nucleus, and barrel field of the sensory cortex, as well as in four representative structures unrelated to the pathway. The higher dose of scopolamine raised baseline CBF in the two trigeminal nuclei, but neither dose diminished the percentage of increases in local CBF because of vibrissal stimulation in any of the stations of the pathway. These results do not support involvement of muscarinic receptors in the mechanism of enhancement of local CBF by functional neuronal activation, at least not in the whisker-barrel cortex sensory pathway in the unanesthetized rat.  (+info)

Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. (56/5742)

The binding of [11C]diprenorphine to mu, kappa, and delta subsites in cortical and subcortical structures was measured by positron emission tomography in vivo in six patients before and after surgical relief of trigeminal neuralgia pain. The volume of distribution of [11C]diprenorphine binding was significantly increased after thermocoagulation of the relevant trigeminal division in the following areas: prefrontal, insular, perigenual, mid-cingulate and inferior parietal cortices, basal ganglia, and thalamus bilaterally. In addition to the pain relief associated with the surgical procedure, there also was an improvement in anxiety and depression scores. In the context of other studies, these changes in binding most likely resulted from the change in the pain state. The results suggest an increased occupancy by endogenous opioid peptides during trigeminal pain but cannot exclude coexistent down-regulation of binding sites.  (+info)