Thioredoxin facilitates the induction of heme oxygenase-1 in response to inflammatory mediators. (57/349)

Heme oxygenase (HO)-1 is a stress response protein that is regulated by oxidative stress. HO-1 catalyzes the generation of biliverdin, carbon monoxide, and iron from heme. Lipopolysaccharide (LPS) and interleukin (IL)-1beta induce HO-1 through the binding of nuclear proteins to AP-1 motifs in enhancer regions upstream from the transcription start site. The DNA binding activity of AP-1 proteins depends on the reduction of cysteines in their DNA-binding domains. We found that agents that disrupt free sulfhydryl groups abolish AP-1 binding activity in nuclear proteins obtained from rat aortic smooth muscle cells and macrophages stimulated with IL-1beta or LPS. Thioredoxin (TRX) may regulate the redox status of nuclear transcription factors in response to oxidative stimuli, thus we determined the role of TRX in the physiologic regulation of HO-1. TRX underwent nuclear translocation in cells stimulated with IL-1beta and LPS. We transfected macrophages with a heterologous promoter construct containing two AP-1 sites from an upstream enhancer region in the HO-1 promoter. Recombinant TRX induced promoter activity to a level analogous to that induced by LPS, and this TRX response was abolished by mutation of the AP-1 sites. An inhibitor of TRX reductase, used to prevent TRX translocation in the reduced state, decreased HO-1 induction by IL-1beta and LPS. These data provide the first evidence that TRX contributes to the induction of HO-1 by inflammatory mediators.  (+info)

TSH controls Ref-1 nuclear translocation in thyroid cells. (58/349)

Ref-1 (called also APE) is a bifunctional protein playing a role in a large variety of cell functions. It is a major member of the DNA base excision repair system. Moreover, through reduction of cysteine residues, Ref-1 controls the activity of several transcription factors. It has been previously demonstrated that TSH up-regulates Ref-1 gene expression in thyroid cells. By using the rat FRTL-5 cell line, we demonstrate that TSH controls Ref-1 intracellular localization. Western blot experiments indicate that addition of TSH to the culture medium increases the Ref-1 cytoplasm-to-nucleus translocation. This phenomenon occurs at early times of TSH stimulation and is not dependent on protein neosynthesis. The Ref-1 cellular compartmentalization was also investigated in human thyroid tumors. A Ref-1 nuclear/cytoplasmic ratio difference between normal and cancerous thyroid tissues was observed. These results suggest that Ref-1 localization may have a critical role in the control of thyroid cell functions.  (+info)

Substitution of Asp-210 in HAP1 (APE/Ref-1) eliminates endonuclease activity but stabilises substrate binding. (59/349)

HAP1, also known as APE/Ref-1, is the major apurinic/apyrimidinic (AP) endonuclease in human cells. Previous structural studies have suggested a possible role for the Asp-210 residue of HAP1 in the enzymatic function of this enzyme. Here, we demonstrate that substitution of Asp-210 by Asn or Ala eliminates the AP endonuclease activity of HAP1, while substitution by Glu reduces specific activity approximately 500-fold. Nevertheless, these mutant proteins still bind efficiently to oligonucleotides containing either AP sites or the chemically unrelated bulky p-benzoquinone (pBQ) derivatives of dC, dA and dG, all of which are substrates for HAP1. These results indicate that Asp-210 is required for catalysis, but not substrate recognition, consistent with enzyme kinetic data indicating that the HAP1-D210E protein has a 3000-fold reduced K(cat )for AP site cleavage, but an unchanged K(m). Through analysis of the binding of Asp-210 substitution mutants to oligonucleotides containing either an AP site or a pBQ adduct, we conclude that the absence of Asp-210 allows the formation of a stable HAP1-substrate complex that exists only transiently during the catalytic cycle of wild-type HAP1 protein. We interpret these data in the context of the structure of the HAP1 active site and the recently determined co-crystal structure of HAP1 bound to DNA substrates.  (+info)

Requirement for human AP endonuclease 1 for repair of 3'-blocking damage at DNA single-strand breaks induced by reactive oxygen species. (60/349)

The major mammalian apurinic/apyrimidinic (AP) endonuclease (APE1) plays a central role in the DNA base excision repair pathway (BER) in two distinct ways. As an AP endonuclease, it initiates repair of AP sites in DNA produced either spontaneously or after removal of uracil and alkylated bases in DNA by monofunctional DNA glycosylases. Alternatively, by acting as a 3'-phosphoesterase, it initiates repair of DNA strand breaks with 3'-blocking damage, which are produced either directly by reactive oxygen species (ROS) or indirectly through the AP lyase reaction of damage-specific DNA glycosylases. The endonuclease activity of APE1, however, is much more efficient than its DNA 3'-phosphoesterase activity. Using whole extracts from human HeLa and lymphoblastoid TK6 cells, we have investigated whether these two activities differentially affect BER efficiency. The repair of ROS-induced DNA strand breaks was significantly stimulated by supplementing the reaction with purified APE1. This enhancement was linearly dependent on the amount of APE1 added, while addition of other BER enzymes, such as DNA ligase I and FEN1, had no effect. Moreover, depletion of endogenous APE1 from the extract significantly reduced the repair activity, suggesting that APE1 is essential for repairing such DNA damage and is limiting in extracts of human cells. In contrast, when uracil-containing DNA was used as the substrate, the efficiency of repair was not affected by exogenous APE1, presumably because the AP endonuclease activity was not limiting. These results indicate that the cellular level of APE1 may differentially affect repair efficiency for DNA strand breaks but not for uracil and AP sites in DNA.  (+info)

A novel action of human apurinic/apyrimidinic endonuclease: excision of L-configuration deoxyribonucleoside analogs from the 3' termini of DNA. (61/349)

beta-l-Dioxolane-cytidine (l-OddC, BCH-4556, Troxacitabine) is a novel unnatural stereochemical nucleoside analog that is under phase II clinical study for cancer treatment. This nucleoside analog could be phosphorylated and subsequently incorporated into the 3' terminus of DNA. The cytotoxicity of l-OddC was correlated with the amount of l-OddCMP in DNA, which depends on the incorporation by DNA polymerases and the removal by exonucleases. Here we reported the purification and identification of the major enzyme that could preferentially remove l-OddCMP compared with dCMP from the 3' termini of DNA in human cells. Surprisingly, this enzyme was found to be apurinic/apyrimidinic endonuclease (APE1) (), a well characterized DNA base excision repair protein. APE1 preferred to remove l- over d-configuration nucleosides from 3' termini of DNA. The efficiency of removal of these deoxycytidine analogs were as follows: l-OddC > beta-l-2',3'-dideoxy-2', 3'-didehydro-5-fluorocytidine > beta-l-2',3'-dideoxycytidine > beta-l-2',3'-dideoxy-3'-thiocytidine > beta-d-2',3'-dideoxycytidine > beta-d-2',2'-difluorodeoxycytidine > beta-d-2'-deoxycytidine >/= beta-d-arabinofuranosylcytosine. This report is the first demonstration that an exonuclease can preferentially excise l-configuration nucleoside analogs. This discovery suggests that APE1 could be critical for the activity of l-OddC or other l-nucleoside analogs and may play additional important roles in cells that were not previously known.  (+info)

Gelonin is an unusual DNA glycosylase that removes adenine from single-stranded DNA, normal base pairs and mismatches. (62/349)

We reported that plant ribosome inactivating proteins (RIP) have a unique DNA glycosylase activity that removes adenine from single-stranded DNA (Nicolas, E., Beggs, J. M., Haltiwanger, B. M., and Taraschi, T. F. (1998) J. Biol. Chem. 273, 17216-17220). In this investigation, we further characterized the interaction of the RIP gelonin with single-stranded oligonucleotides and investigated its activity on double-stranded oligonucleotides. At physiological pH, zinc and beta-mercaptoethanol stimulated the adenine DNA glycosylase activity of gelonin. Under these conditions, gelonin catalytically removed adenine from single-stranded DNA and, albeit to a lesser extent, from normal base pairs and mismatches in duplex DNA. Also unprecedented was the finding that activity on single-stranded and double-stranded oligonucleotides containing multiple adenines generated unstable products with several abasic sites, producing strand breakage and duplex melting, respectively. The results from competition experiments suggested similar interactions between gelonin's DNA-binding domain and oligonucleotides with and without adenine. A re-examination of the classification of gelonin as a DNA glycosylase/AP lyase using the borohydride trapping assay revealed that gelonin was similar to the DNA glycosylase MutY: both enzymes are monofunctional glycosylases, which are trappable to their DNA substrates. The k(cat) for the removal of adenine from single-stranded DNA was close to the values observed with multisubstrate DNA glycosylases, suggesting that the activity of RIPs on DNA may be physiologically relevant.  (+info)

The nature of the 5'-terminus is a major determinant for DNA processing by Schizosaccharomyces pombe Rad2p, a FEN-1 family nuclease. (63/349)

The nuclease activity of FEN-1 is essential for both DNA replication and repair. Intermediate DNA products formed during these processes possess a variety of structures and termini. We have previously demonstrated that the 5'-->3' exonuclease activity of the Schizosaccharomyces pombe FEN-1 protein Rad2p requires a 5'-phosphoryl moiety to efficiently degrade a nick-containing substrate in a reconstituted alternative excision repair system. Here we report the effect of different 5'-terminal moieties of a variety of DNA substrates on Rad2p activity. We also show that Rad2p possesses a 5'-->3' single-stranded exonuclease activity, similar to Saccharomyces cerevisiae Rad27p and phage T5 5'-->3' exonuclease (also a FEN-1 homolog). FEN-1 nucleases have been associated with the base excision repair pathway, specifically processing cleaved abasic sites. Because several enzymes cleave abasic sites through different mechanisms resulting in different 5'-termini, we investigated the ability of Rad2p to process several different types of cleaved abasic sites. With varying efficiency, Rad2p degrades the products of an abasic site cleaved by Escherichia coli endonuclease III and endonuclease IV (prototype AP endonucleases) and S.POMBE: Uve1p. These results provide important insights into the roles of Rad2p in DNA repair processes in S.POMBE:  (+info)

The inositol polyphosphate 5-phosphatases and the apurinic/apyrimidinic base excision repair endonucleases share a common mechanism for catalysis. (64/349)

Inositol polyphosphate 5-phosphatases (5-phosphatase) hydrolyze the 5-position phosphate from the inositol ring of phosphatidylinositol-derived signaling molecules; however, the mechanism of catalysis is only partially characterized. These enzymes play critical roles in regulating cell growth, apoptosis, intracellular calcium oscillations, and post-synaptic vesicular trafficking. The UCLA fold recognition server (threader) predicted that the conserved 300-amino acid catalytic domain, common to all 5-phosphatases, adopts the fold of the apurinic/apyrimidinic (AP) base excision repair endonucleases. PSI-BLAST searches of GENPEPT, using the amino acid sequence of AP endonuclease exonuclease III, identified all members of the 5-phosphatase family with highly significant scores. A sequence alignment between exonuclease III and all known 5-phosphatases revealed six highly conserved motifs containing residues that corresponded to the catalytic residues in the AP endonucleases. Mutation of each of these residues to alanine in the mammalian 43-kDa, or yeast Inp52p 5-phosphatase, resulted in complete loss of enzyme activity. We predict the 5-phosphatase enzymes share a similar mechanism of catalysis to the AP endonucleases, consistent with other common functional similarities such as an absolute requirement for magnesium for activity. Based on this analysis, functional roles have been assigned to conserved residues in all 5-phosphatase enzymes.  (+info)