Purification and chemical characterization of human hexosaminidases A and B. (9/4726)

N-Acetyl-beta-hexosaminidases A and B were purified to homogeneity from human placenta. In the initial step of purification, the enzymes were adsorbed on concanavalin A-Sepharose 4B and eluted from the column with alpha-methyl D-mannosides. Subsequent purification steps included DEAE-cellulose column chromatography, QAE-Sephadex [diethyl-(2-hydroxypropyl)aminoethyl-Sephadex] column chromatography, Sephadex G-200 gel filtration and preparative disc polyacrylamide-gel electrophoresis, followed by another QAE-Sephadex chromatography for the hexosaminidase A preparation, and DEAE-cellulose column chromatography, calcium phosphate gel chromatography, Sephadex G-200 gel filtration, QAE-Sephadex chromatography and CM-cellulose chromatography for the hexosaminidase B preparation. The purified preparations, particularly hexosaminidase A, had significantly higher specific enzyme activities than previously reported. The preparations moved on polyacrylamide-gel electrophoresis as single protein bands, which also stained for enzyme activity. Sedimentation-equilibrium centrifugation indicated homogenous dispersion of the enzymes, and the molecular weight was estimated as about 110000 for both enzymes. Complete amino acid and carbohydrate compositions of the two isoenzymes were determined, and, in contrast with previous suggestions, no sialic acid was found in the enzymes.  (+info)

Isolation and characterization of a Ca2+ -binding polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. (10/4726)

C-occolithophoridae, a group of mostly unicellular algae, possess a cell wall containing calcified plates, called coccoliths. The coccoliths from the species Emilania huxleyi (Lohmann) Kamptner contain a water-soluble acid polysaccharide. In this paper we describe the isolation and some characteristic properties of the polysaccharide, in particular its Ca2+ -binding capacity. A large-scale cultivation of the Coccolithophoridae was worked out and a new procedure for isolating coccoliths was developed. The polysaccharide obtained from the coccoliths contained two types of monobasic acid groups in a total amount of 1.8 mumol/mg polysaccharide. One type consisted of weakly acid groups which were identified as uronic acids. The nature of the stronger acid groups remains to be established. The ratio between the respective groups was 1:0.8. Studies with 45Ca2+ demonstrated that the isolated polysaccharide is capable of binding Ca2+. Equilibrium dialysis revealed that the maximum amount of Ca2+ which can be bound in 0.92 +/- 0.05 mumol/mg polysaccharide. Flow-rate dialysis experiments strongly suggested the presence of two classes of Ca2+ -binding sites differing in affinity for Ca2+. High-affinity sites (dissociation constant Kd for Ca2+ :2.2 +/- 1.0 X 10(-5) M) were found to be present in amounts (0.38 +/- 0.04 mumol/mg polysaccharide) approximately equivalent to the strongly acid monovalent groups mentioned above (0.8 mumol/mg polysaccharide). Low-affinity sites (Kd for Ca2+: -11 +/- 39 X 10(-5) M) were estimated at 0.74 +/- 0.11 mumol/mg polysaccharide. Although this figure could be determined less accurately, it is suggested that the uronic acids (1.0 mumol/mg polysaccharide) are identical to the low-affinity sites. Preferential binding of Ca2+ occurred in a 100-fold excess of Na+ and Mg2+ as was shown by gel filtration. A 100-fold excess of Sr2+ inhibited Ca2+ binding to a great extent while no Ca2+ was bound in the presence of an equimolar amount of La3+. The dissociation constants of the high-affinity sites for Na+, Mg2+, Sr2+ and La3+ (in the presence of Ca2+) were determined with the flow-rate dialysis technique. They confirm the order of binding preference found with gel filtration. A polysaccharide with similar properties could be isolated from subfossil coccoliths of E. hyxleyi (about 1000 years old). The possible role of the polysaccharide as a heterogeneous matrix in coccolith formation is discussed.  (+info)

Inhibition of the hydrolytic and transpeptidase activities of rat kidney gamma-glutamyl transpeptidase by specific monoclonal antibodies. (11/4726)

Monoclonal antibodies (mAb) against the native form of rat kidney gamma-glutamyl transpeptidase (GGT) were isolated by screening hybridomas with rat kidney brush-border membrane vesicles. They were directed against protein rather than sugar epitopes in that each recognized all GGT isoforms. All of them inhibited partially the enzyme activity of GGT. They were specific in that they inhibited the rat enzyme, but not the mouse or human enzyme. Kinetic analyses were carried out with free GGT and GGT-mAb complexes with d-gamma-glutamyl-p-nitroanilide in the presence or absence of maleate, or in the presence or absence of alanine, cysteine, cystine or glycylglycine as gamma-glutamyl acceptors. mAbs 2A10 and 2E9 inhibited the hydrolytic and glutaminase activities of GGT and had little effect on the transpeptidation activity of the enzyme, whereas mAbs 4D7 and 5F10 inhibited transpeptidation, but not hydrolytic or glutaminase activities. mAb 5F10 mimicked the effect of maleate on GGT, in that it inhibited transpeptidation, enhanced the glutaminase activity and increased the affinity of the donor site of GGT for acivicin. Such mAbs may be useful for long-term studies in tissue cultures and in vivo, and for the identification of GGT epitopes that are important for the hydrolytic and transpeptidase activities.  (+info)

The structure of the carbohydrate backbone of the core-lipid A region of the lipopolysaccharide from a clinical isolate of Yersinia enterocolitica O:9. (12/4726)

Yersinia enterocolitica O:9 strain Ruokola/71-c-PhiR1-37-R possesses mainly rough-type lipopolysaccaride (LPS) and smaller amounts of S-form LPS. Structural analysis of the former is reported here. After deacylation of the LPS, the phosphorylated carbohydrate backbone of the inner core-lipid A region could be isolated by using high-performance anion-exchange chromatography. Its structure was determined by means of compositional and methylation analyses and 1H-, 13C-, and 31P-NMR spectroscopy as: [see text] in which L-alpha-D-Hep is L-glycero-alpha-D-manno-heptopyranose, D-alpha-D-Hep is D-glycero-alpha-D-manno-heptopyranose, and Kdo is 3-deoxy-D-manno-oct-2-ulopyranosonic acid. All hexoses are pyranoses.  (+info)

The phenoloxidases of the ascomycete Podospora anserina. Structural differences between laccases of high and low molecular weight. (13/4726)

In order to investigate the extent of the relationship between the three copper-containing glycoproteins, laccases I, II and III (Mr70000, 80000 and 390000 respectively) of Podospora anserina, the following experiments were carried out on laccases II and III: (a) determination of amino acid composition; (b) determination of N-terminal and C-terminal amino acid; (c) determination of sugar composition; (d) dissociation studies on native and denatured laccases and also after removal of copper from the enzymes; (e) digestion of the carbohydrate moieties with the aid of glycosylhydrolases. A comparison between the results of these experiments and data previously obtained with laccase I allows the following conclusions to be drawn. 1. Laccases II and III are not identical. 2. Neither of these low molecular weight laccases are as complete molecules subunits of the oligomeric laccase I. 3. The possibility of partial identity of amino acid sequences of laccases I and III can not be excluded. 4. Laccase II possibly consists of subunits of Mr37000 whereas laccase III does not. 5. Digestion of 50% of the carbohydrate content leads to complete loss of serological specificity (serological reaction and cross reaction). This finding is discussed with regard to the possible role of the carbohydrate moiety as antigenic determinants and thus as the reason for the immunological relationship. As a consequence, at least three independent structural genes for laccases must be assumed.  (+info)

Surface proteins of typhus and spotted fever group rickettsiae. (14/4726)

Six proteins, previously established as major constituents of intact organisms, were identified in cell envelopes obtained from intrinsically radiolabeled Rickettsia prowazekii. Extrinsic radioiodination of intact organisms conducted at 0.5 micronM iodide indicated that protein 4 was the most peripheral, although protein 1 also had reactive groups exposed on the surface of the organisms. A 10-fold increase in iodide concentration resulted in labeling of protein 2, and at 50 micronM iodide, all six major proteins were radiolabeled. Similar selective labeling was not achieved with R. conorii. Analysis of both typhus and spotted fever group organisms radiolabeled with galactose suggested that carbohydrate was associated with proteins 1, 3, and 4. Typhus soluble antigen included all major proteins except protein 2, which remained attached to particulate rickettsiae after ether extraction. Protein 4 appeared to be prominent in the surface topography of R. prowazekii, was a component of soluble antigen and may have an important role in rickettsiae-host interactions.  (+info)

Monkey pepsinogens and pepsins. III. Carbohydrate moiety of Japanese monkey pepsinogens and the amino acid sequence around the site of its attachment to protein. (15/4726)

Purified Japanese monkey pepsinogens I and II contain carbohydrate as a part of the enzyme molecule. By gel filtration on Sephadex G-100, chromatography on DE-32 cellulose, and polyacrylamide disc gel electrophoresis, the carbohydrate moiety could not be separated from the enzyme protein, and the content did not decrease on repeated chromatography. Glycopeptides were obtained by successive digestion of pepsinogens with thermolysin and aminopeptidases and isolated by chromatography on Sephadex G-25 and G-50. Identification and determination of carbohydrate components was performed by paper and gas-liquid chromatographies. The presence of 4 glucosamines, 6 galactoses, 6--8 mannoses, and 8--11 fucoses per molecule of the glycopeptide of both pepsinogens was observed, of which the high content of fucose is especially unique. The molecular weight of the carbohydrate chains should be around 4,000--5,000. The amino acid sequence of a major glycopeptide was deduced to be Ile-Gly-Ile-Gly-Thr-Pro-Gln-Ala-Asn, in which the asparagine residue is the site of attachment of the carbohydrate chain.  (+info)

Assay of intercellular adhesiveness using cell-coated Sephadex beads as collecting particles. (16/4726)

A simple, rapid and precise method, based on a previous method, for measuring relative rates of intercellular adhesion is described. DEAE-Sephadex beads were treated with nitrocellulose in order to allow cells to grow on their surfaces. Balb/c 3T3 and Balb/c 3T12 cells were used to characterize the assay. They formed confluent cell layers on nitrocellulose-treated DEAE-Sephadex. These cell-coated beads were employed to collect 32P-labelled cells from single cell suspensions. Since they formed statistically uniform, large collecting surfaces, the collection of labelled cells was markedly improved as compared to the original assay. The cell-coated beads collected a large percentage of the labelled cells in a short time. The percentage of cells collected was independent of the concentration of labelled cells in the assay mixture, and the collection was linear for approximately 60 min. The variability between replicate assays was usually +/- 5%. The assay allows the rapid and precise determination of intercellular adhesion in large numbers of individual samples. These features make it useful to screen for effects of different treatments on intercellular adhesions.  (+info)