Isolation and structural characterization of glycosphingolipids of in vitro propagated human umbilical vein endothelial cells. (57/5581)

To investigate in detail the expression of glycosphingolipids (GSLs) on endothelial cells, 4.85 x 10(9) human umbilical vein endothelial cells (HUVECs) were cultivated in a 2 l bioreactor using microcarriers as a support for anchorage dependent growing cells. Neutral GSLs and gangliosides were isolated and their structures were determined by TLC immunostaining, fast atom bombardment-mass spectrometry (FAB-MS) of the native GSLs, and gas chromatography-electron impact mass spectrometry (GC-EIMS) of partially methylated alditol acetates. GbOse4Cer, GbOse3Cer, and LacCer, all carrying mainly C24- and C16-fatty acid beside C18-sphingosine, were detected as the major neutral GSLs (36%, 23%, and 15% of the total orcinol stain, respectively); GlcCer, nLcOse4Cer, and nLcOse6Cer were expressed to substantial minor amounts (9%, 12%, and 5% of the total orcinol stain, respectively). TLC immunostaining revealed the presence of lipid bound Lewisx antigen, whereas the isomeric Lewisa structure was detectable only in very low quantities. GM3(Neu5Ac) with C18-sphingosine was the major ganglioside constituting about 90% of the whole ganglioside fraction. The fatty acid composition was determined by GC-MS of fatty acid methyl esters, indicating the predominance of C24- and C16-substituted GM3(Neu5Ac), followed by C18- and C22-substituted species. Terminally alpha2-3 sialylated neolacto-series ganglioside IV3Neu5Ac-nLcOse4Cer was the second most abundant ganglioside in HUVECs (8% of the total resorcinol stain), and IV6Neu5Ac-nLcOse4Cer and VI3Neu5Ac-nLcOse6Cer (together less than 2% of total resorcinol stain) were found in minor quantities. Lipid bound sialyl Lewisx antigen with poly-N-acetyllactosaminyl chains, and traces of gangliotetraose-type gangliosides GM1 and GD1a were identified by TLC immunostaining. The expression of dominant neutral GSLs LacCer, GbOse3Cer, and GbOse4Cer, and of ganglioside GM3(Neu5Ac) was assayed by indirect immunofluorescence microscopy of cell layers grown in chamber slides, each showing different plasma membrane and subcellular distribution patterns. The complete structural characterization of GSLs from HUVECs contributes to our understanding about their functional role, not only of the carbohydrate but also of the lipid moiety, as receptors for bacterial toxins, as cell surface antigens of cellular interaction and as receptors for blood components and macromolecules of the extracellular matrix.  (+info)

Sequential deglycosylation and utilization of the N-linked, complex-type glycans of human alpha1-acid glycoprotein mediates growth of Streptococcus oralis. (58/5581)

Streptococcus oralis is the agent of a large number of infections in immunocompromised patients, but little is known regarding the mechanisms by which this fermentative organism proliferates in vivo. Glycoproteins are widespread within the circulation and host tissues, and could provide a source of fermentable carbohydrate for the growth of those pathogenic organisms with the capacity to release monosaccharides from glycans via the production of specific glycosidases. The ability of acute phase serum alpha1-acid glycoprotein to support growth of S.oralis in vitro has been examined as a model for growth of this organism on N-linked glycoproteins. Growth was accompanied by the production of a range of glycosidases (sialidase, N-acetyl-beta-D-glucosaminidase, and beta-D-galactosidase) as measured using the 4-methylumbelliferone-linked substrates. The residual glycoprotein glycans remaining during growth of this organism were released by treatment with hydrazine and their analysis by HPAEC-PAD and MALDI demonstrated extensive degradation of all glycan chains with only terminal N-acetylglucosamine residues attached to asparagines of the protein backbone remaining when growth was complete. Monosaccharides were released sequentially from the glycans by S.oralis glycosidases in the order sialic acid, galactose, fucose, nonterminal N-acetylglucosamine, and mannose due to the actions of exo-glycosidic activities, including mannosidases which have not previously been reported for S.oralis. All released monosaccharides were metabolized during growth with the exception of fucose which remained free in culture supernatants. Direct release of oligosaccharides was not observed, indicating the absence of endo-glycosidases in S.oralis. We propose that this mechanism of deglycosylation of host glycoproteins and the subsequent utilization of released monosaccharides is important in the survival and persistence of this and other pathogenic bacteria in vivo.  (+info)

Novel Schizosaccharomyces pombe N-linked GalMan9GlcNAc isomers: role of the Golgi GMA12 galactosyltransferase in core glycan galactosylation. (59/5581)

Schizosaccharomyces pombe synthesizes very large N-linked galactomannans, which are elongated from the Man9GlcNAc2 core that remains after the trimming of three Glc residues from the Glc3Man9GlcNAc2 originally transferred from dolichyl pyrophosphate to nascent proteins in the endoplasmic reticulum. Prior to elongation of the galactomannan outer chain, the Man9GlcNAc2 core is modified into a family of Hex10-15GlcNAc2 structures by the addition of both Gal and Man residues (Ziegler et al. (1994) J. Biol. Chem., 269, 12527-12535). To understand the pathway of Man9GlcNAc2 modification, the Hex10GlcNAc-sized pool was isolated by Bio-Gel P-4 gel filtration from the endo H-released N-glycans of S.pombe glycoproteins. This pool yielded four major fractions, a, b, c, and g, on preparative high pH, anion exchange chromatography, that represented 10, 29, 46, and 13% of the total Hex10GlcNAc present, respectively. Structures of the glycan isomers present in each fraction were determined by one- and two-dimensional 1H NMR spectroscopy techniques. Fraction a is principally (approximately 93%) a Man10GlcNAc with a new alpha1,2-linked Man cap on the upper-arm of Man9GlcNAc. Fraction b contained two isomers of GalMan9GlcNAc in which an alpha1,2-linked terminal Gal had been added either to the upper (b1, 30%) or middle-arm (b2, 70%) of Man9GlcNAc. The gma12 - alpha1,2-galactosyltransferase-negative S. pombe strain (Chappell et al. (1994) Mol. Biol. Cell., 5, 519-528) did not make fraction b implying that the gma12p galactosyltransferase is responsible for synthesis of both isomers b1 and b2. Isomer c is Man10GlcNAc in which a new branching alpha1, 6-linked Man had been added to the lower-arm alpha1,3-linked core residue as found earlier in Saccharomyces cerevisiae and Pichia pastoris. Fraction g had less than molar stoichiometry of both Gal and Glc. The major isomer (g1, 85%) is the Man9GlcNAc core with an alpha1,3-linked branching Gal on the penultimate 2-O-substituted Man of the lower arm. This residue is also found on a novel O-linked oligosaccharide recently described in S.pombe; Manalpha1,2(Galalpha1, 3)Manalpha1,2Mannitol (Gemmill and Trimble (1999) Glycobiology, 9, 507-515). The second isomer (g2, 15%) is the partially processed Glc2Man9GlcNAc intermediate. Defining these Hex10GlcNAc structures provides a starting point for understanding the enzymology of N-linked galactomannan core heterogeneity seen on S.pombe glycoproteins.  (+info)

Schizosaccharomyces pombe produces novel Gal0-2Man1-3 O-linked oligosaccharides. (60/5581)

Schizosaccharomyces pombe whole-cell glycoproteins, previously depleted of N-linked glycans by sequential treatment with endo-ss-N-acetylglucosaminidase H and peptide-N4-asparagine amidohydrolase F, were ss-eliminated with 0.1 M NaOH/1 M NaBH4 to release the O-linked oligosaccharides. The saccharide-alditols were separated by gel-exclusion chromatography into pools from Hexitol to Hex4Hexitol in size. Analysis of the Hexitol pool indicated Man to be the only sugar linked to Ser or Thr residues. The Hex1Hexitol pool contained two components, Galalpha1,2Man-ol (2A) and Manalpha1, 2Man-ol (2B). The Hex2Hexitol pool contained two components, Galalpha1,2Manalpha1,2Man-ol (3A) and Manalpha1,2Manalpha1,2Man-ol (3B). The two Hex3Hexitol components were Galalpha1,2(Galalpha1, 3)Manalpha1,2Man-ol (4A) and Manalpha1,2(Galalpha1,3)Manalpha1, 2Man-ol (4B). The Hex4Hexitol component was found to be a single isomer with the composition of Galalpha1,2(Galalpha1,3)Manalpha1, 2Manalpha1,2Man-ol (5AB). Surprisingly, galactobiose was not detected in any of these oligosaccharides. The gma12 (T. G. Chappell and G. Warren (1989) J. Cell Biol., 109, 2693-2707) and gth1 (T. G. Chappell personal communication) alpha1, 2-galactosyltransferase-deficient mutants and the gma12/gth1 double mutant S.pombe strains were similarly examined. The results indicated that gma12p is solely responsible for the addition of terminal alpha1,2-linked Gal in compound 2A, while one or both of gma12p and gth1p are required for the alpha1,2-linked Gal in 4A. Both transferases are largely responsible for terminal Gal in isomer 5AB. Neither gma12 nor gth1 had any discernible effect on the structure of the large N-linked galactomannans as determined by 1H NMR spectroscopy. Thus, while gth1p and gma12p appear responsible for adding alpha1,2-linked Gal to terminal Man, neither adds galactose side chains to the N-linked poly alpha1,6-Man outerchain, nor the O-linked branch-forming alpha1,3-linked Gal. Furthermore, the presence of Hexalpha1,2(Galalpha1,3)Manalpha1,2- structures in the O-linked glycans implies the presence of a novel branch-forming alpha1,3-galactosyltransferase in S.pombe.  (+info)

Isolation and characterization of linear polylactosamines containing one and two site-specifically positioned Lewis x determinants: WGA agarose chromatography in fractionation of mixtures generated by random, partial enzymatic alpha3-fucosylation of pure polylactosamines. (61/5581)

We report that isomeric monofucosylhexasaccharides, Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4(Fucalpha1-3) GlcNAc, Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-3Galbeta1-4 GlcNAc and Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1- 4GlcNAcbeta1-3Galbeta1-4 GlcNAc, and bifucosylhexasaccharides Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAc, Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1- 4GlcNAcbeta1-3Galbeta1-4 (Fucalpha1-3)GlcNAc and Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4( Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4GlcNAc can be isolated in pure form from reaction mixtures of the linear hexasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4GlcNAc with GDP-fucose and alpha1,3-fucosyltransferases of human milk. The pure isomers were characterized in several ways;1H-NMR spectroscopy, for instance, revealed distinct resonances associated with the Lewis x group [Galbeta1-4(Fucalpha1-3)GlcNAc] located at the proximal, middle, and distal positions of the polylactosamine chain. Chromatography on immobilized wheat germ agglutinin was crucial in the separation process used; the isomers carrying the fucose at the reducing end GlcNAc possessed particularly low affinities for the lectin. Isomeric monofucosyl derivatives of the pentasaccharides GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1- 4Gl cNAc and Galalpha1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4G lcN Ac and the tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc were also obtained in pure form, implying that the methods used are widely applicable. The isomeric Lewis x glycans proved to be recognized in highly variable binding modes by polylactosamine-metabolizing enzymes, e.g., the midchain beta1,6-GlcNAc transferase (Leppanen et al., Biochemistry, 36, 13729-13735, 1997).  (+info)

Characterization of a neutrophil cell surface glycosaminoglycan that mediates binding of platelet factor 4. (62/5581)

Platelet factor 4 (PF-4) is a platelet-derived alpha-chemokine that binds to and activates human neutrophils to undergo specific functions like exocytosis or adhesion. PF-4 binding has been shown to be independent of interleukin-8 receptors and could be inhibited by soluble chondroitin sulfate type glycosaminoglycans or by pretreatment of cells with chondroitinase ABC. Here we present evidence that surface-expressed neutrophil glycosaminoglycans are of chondroitin sulfate type and that this species binds to the tetrameric form of PF-4. The glycosaminoglycans consist of a single type of chain with an average molecular mass of approximately 23 kDa and are composed of approximately 85-90% chondroitin 4-sulfate disaccharide units type CSA (-->4GlcAbeta1-->3GalNAc(4-O-sulfate)beta1-->) and of approximately 10-15% di-O-sulfated disaccharide units. A major part of these di-O-sulfated disaccharide units are CSE units (-->4GlcAbeta1-->3GalNAc(4,6-O-sulfate)beta1-->). Binding studies revealed that the interaction of chondroitin sulfate with PF-4 required at least 20 monosaccharide units for significant binding. The di-O-sulfated disaccharide units in neutrophil glycosaminoglycans clearly promoted the affinity to PF-4, which showed a Kd approximately 0.8 microM, as the affinities of bovine cartilage chondroitin sulfate A, porcine skin dermatan sulfate, or bovine cartilage chondroitin sulfate C, all consisting exclusively of monosulfated disaccharide units, were found to be 3-5-fold lower. Taken together, our data indicate that chondroitin sulfate chains function as physiologically relevant binding sites for PF-4 on neutrophils and that the affinity of these chains for PF-4 is controlled by their degree of sulfation.  (+info)

Sequence analysis of heparan sulphate and heparin oligosaccharides. (63/5581)

The biological activity of heparan sulphate (HS) and heparin largely depends on internal oligosaccharide sequences that provide specific binding sites for an extensive range of proteins. Identification of such structures is crucial for the complete understanding of glycosaminoglycan (GAG)-protein interactions. We describe here a simple method of sequence analysis relying on the specific tagging of the sugar reducing end by 3H radiolabelling, the combination of chemical scission and specific enzymic digestion to generate intermediate fragments, and the analysis of the generated products by strong-anion-exchange HPLC. We present full sequence data on microgram quantities of four unknown oligosaccharides (three HS-derived hexasaccharides and one heparin-derived octasaccharide) which illustrate the utility and relative simplicity of the technique. The results clearly show that it is also possible to read sequences of inhomogeneous preparations. Application of this technique to biologically active oligosaccharides should accelerate progress in the understanding of HS and heparin structure-function relationships and provide new insights into the primary structure of these polysaccharides.  (+info)

Structural and serological studies on the O-antigen of Proteus mirabilis O14, a new polysaccharide containing 2-[(R)-1-carboxyethylamino]ethyl phosphate. (64/5581)

An O-specific polysaccharide was obtained by mild acid degradation of Proteus mirabilis O14 lipopolysaccharide (LPS) and found to contain D-galactose, 2-acetamido-2-deoxy-D-glalactose, phosphate, N-(2-hydroxyethyl)-D-alanine (D-AlaEtn), and O-acetyl groups. Studies of the initial and O-deacetylated polysaccharides using one- and two-dimensional 1H- and 13C-NMR spectroscopy, including COSY, TOCSY, NOESY, H-detected 1H,13C heteronuclear multiple-quantum coherence, and heteronuclear multiple-bond correlation experiments, demonstrated the following structure of the repeating unit: [equation: see text] This is the second bacterial polysaccharide reported to contain alpha-D-Galp6PAlaEtn, whereas the first one was the O-antigen of P. mirabilis EU313 taken erroneously as strain PrK 6/57 from the O3 serogroup [Vinogradov, E. V., Kaca, W., Shashkov, A.S., Krajewska-Pietrasik, D., Rozalski, A., Knirel, Y.A. & Kochetkov, N.K. (1990) Eur. J. Biochem., 188, 645-651]. Anti-(P. mirabilis O14) serum cross-reacted with LPS of P. mirabilis EU313 and vice versa in passive hemolysis and ELISA. Absorption of both O-antisera with the heterologous LPS decreased markedly but did not abolish the reaction with the homologous LPS. These and chemical data indicated that both strains have similar but not identical O-antigens. Therefore, we propose that P. mirabilis EU313 should belong to a new subgroup of the O14 serogroup.  (+info)