Optimization of high-performance liquid chromatographic parameters for the determination of capsaicinoid compounds using the simplex method. (57/464)

A high-performance liquid chromatographic method was developed for the analysis of capsaicinoid compounds, the pungent principles of capsicum fruits. A sequential simplex method was applied to optimize the chromatographic response function used to assess the quality of separation by varying the chromatographic parameters. The separation was achieved in 11 min using a C-8 column of 15-cm length and 4.6 mm diameter using a UV detector. A flow rate of 1.15 ml min(-1) at a column temperature of 43.5 degrees C using 63.7% methanol in water gave the most efficient separation. The method was found to be suitable for the determination of the major capsaicinoid compounds in the capsicum samples.  (+info)

The xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. (58/464)

Xanthomonas campestris pv. vesicatoria bacteria expressing the type III effector protein AvrBs3 induce a hypersensitive response in pepper plants carrying the resistance gene Bs3. Here, we report that infection of susceptible pepper and tomato plants leads to an AvrBs3-dependent hypertrophy of the mesophyll tissue. Agrobacterium-mediated transient expression of the avrBs3 gene in tobacco and potato plants resulted in a similar phenotype. Induction of hypertrophy was shown to depend on the repeat region, nuclear localization signals, and acidic transcription activation domain (AAD) of AvrBs3, suggesting that the effector modulates the host's transcriptome. To search for host genes regulated by AvrBs3 in an AAD-dependent manner, we performed a cDNA-amplified fragment length polymorphism analysis of pepper mRNA populations. Thirteen AvrBs3-induced transcripts were identified and confirmed by reverse transcriptase-polymerase chain reaction. Sequence analysis revealed homologies to auxin-induced and expansinlike genes, which play a role in cell enlargement. These results suggest that some of the AvrBs3-induced genes may be involved in hypertrophy development and that xanthomonads possess type III effectors that steer host gene expression.  (+info)

Cloning and expression of squalene synthase cDNA from hot pepper (Capsicum annuum L.). (59/464)

We isolated and artificially expressed a cDNA clone of the Capsicum annuum squalene synthase (CASS) gene to elucidate the pattern of alternatively regulated two-branch point enzymes. The 1,674-bp CASS cDNA contained an open reading frame of 411 amino acids, yielding a predicted molecular mass of about 45 kDa. A deduced amino acid sequence comparison to other squalene syntheses showed identities with Nicotiana tabacum (91%), Nicotiana benthamiana (90%), Arabidopsis thaliana (79%), and rats (40%). The artificially expressed soluble form of the CASS enzyme was identified by the enzyme activity that converted FPP to squalene and by SDS-PAGE. A Southern blot analysis indicated that at least two copies of the squalene synthase gene exist in the hot pepper genome. In hot pepper, the regulation of the branch point enzymes, squalene synthase and sesquiterpene cyclase was investigated in the UV-challenged leaves of Capsicum annuum. The transcript level and enzyme activity of the CASS were slightly reduced by UV. However, those of the CASC were rapidly induced within 24 h and slowly decreased thereafter.  (+info)

Biosynthesis of terpenes: studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase. (60/464)

Earlier in vivo studies showed the involvement of IspH protein in the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate into isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). We have demonstrated now that cell extract of an Escherichia coli strain engineered for hyperexpression of the ispH (lytB) gene catalyzes the in vitro conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate into IPP and DMAPP. The reaction requires NADH, FAD, divalent cations (preferably Co2+), and probably one or more as-yet-unidentified proteins. The low intrinsic catalytic activities of wild-type E. coli cell extract and isolated chromoplasts of red pepper (Capsicum annuum) are enhanced by the addition of purified recombinant IspH protein.  (+info)

A hot pepper cDNA encoding ascorbate peroxidase is induced during the incompatible interaction with virus and bacteria. (61/464)

Capsicum annuum L. is infected by a number of viruses, including the tobacco mosaic virus (TMV). To study the defense-related genes that are induced by TMV in hot peppers, the pepper plant, which is susceptible to P1.2 but resistant to the P0 pathotype of TMV, was inoculated with TMV-P0. Differential screening isolated the genes that were specifically up- or down-regulated during the hypersensitive response (HR). The CaAPX1 cDNA clone that putatively encodes a polypeptide of cytosolic ascorbate peroxidase was selected as an up-regulated gene. It was isolated for further study. The full-length cDNA for CaAPX1, which is 972 bp long, contained the open-reading frame of 250-amino acid residues. A genomic Southern blot analysis showed that there were only limited copies of the CaAPX1 gene in the hot pepper genome. In hot pepper cv. Bugang, which is resistant to TMV-P0 and susceptible to TMV-P1.2, the CaAPX1 gene transcript was accumulated by TMV-P0, but not by TMV-P1.2 inoculation. CaAPX1 transcripts began to accumulate 24 h post-inoculation of TMV-P0, and increased gradually until 96 h. To investigate whether each transcript is induced by other stimuli, the plants were treated with various chemicals and wounding. A striking induction of the CaAPX1 transcript was observed at 2 h. It subsided 12 h after salicylic acid (SA), ethephon, and methyl jasmonate (MeJA) treatments. The response of the gene upon other pathogen infection was also examined by a bacterial pathogen (Xanthomonas campestris pv. vesicatoria race 3) inoculation. The CaAPX1 gene was induced in a hot pepper (C. annuum cv. ECW 20R) that was resistant to this bacterial pathogen, but not in a susceptible hot pepper (C. annuum cv. ECW). These results suggest the possible role(s) for the CaAPX1 gene in plant defense against viral and bacterial pathogen.  (+info)

Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. (62/464)

The Solanaceae contains many species of agricultural importance. Several of these are cultivated for their fruits, such as the tomato, the pepper and the aubergine. The family is very diverse in fruit type with capsules, drupes, pyrenes, berries, and several sorts of dehiscent non-capsular fruits occurring in the 90+ genera. In this paper, recent work on fruit type evolution in angiosperms is reviewed in relation to dispersal agents and habitat ecology. Defining fruit types in the Solanaceae in a simple five state system, then mapping them onto a previously published molecular phylogeny based on chloroplast DNA allows discussion of the evolution of these fruit types in a phylogenetic framework. Capsules are plesiomorphic in the family, and although berries are a synapomorphy (shared derived character) for a large clade including the genus Solanum (tomatoes and aubergines), they have arisen several times in the family as a whole. Problems with homology of drupes and pyrenes are discussed, and areas for future investigation of fruit structure homology identified. The distribution of fruit types in the large and diverse genus Solanum is also discussed in the light of monophyletic groups identified using chloroplast gene sequences. This variety is related to recent advances in the understanding of the molecular biology of fruit development. Finally, several key areas of future comparative, phylogenetic investigation into fruit type evolution in the family are highlighted.  (+info)

Continuous measurement of macronutrient ions in the transpiration stream of intact plants using the meadow spittlebug coupled with ion chromatography. (63/464)

A method is described for continuous, nondestructive analysis of xylem-borne mineral nutrients in intact transpiring plants. The method uses the xylem-feeding insect the meadow spittlebug (Philaenus spumarius L. [Homoptera: Cercopidae]). This insect will feed from a wide range of plant species and organs. Insect excreta can be collected at all times of the day and night, and its mineral ion content can be analyzed rapidly, and without purification, by ion chromatography. The excreta will have a mineral content virtually identical to that of xylem sap. Cages suitable for containing the insects and collecting excreta from any desired location on plants in both laboratory and greenhouse are described. Even in the greenhouse, evaporation had only a minor effect on the sample ion content. Example results are presented which illustrate dynamics, over several days, in the xylem concentrations of sodium (Na(+)), potassium (K(+)), NH(4)(+), magnesium (Mg(2+)), calcium (Ca(2+)), chloride (Cl(-)), NO(3)(-), PO(4)(3-), and SO(4)(2-). These data were collected from young plants growing in pots of compost in the laboratory and from fully mature pepper (Capsicum annuum L. cv Bellboy) plants growing in hydroponics (rockwool) in the greenhouse. This method should facilitate studies of macronutrient uptake and transport in a range of plants and environments.  (+info)

Ectopic expression of Tsi1 in transgenic hot pepper plants enhances host resistance to viral, bacterial, and oomycete pathogens. (64/464)

In many plants, including hot pepper plants, productivity is greatly affected by pathogen attack. We reported previously that tobacco stress-induced gene 1 (Tsi1) may play an important role in regulating stress responsive genes and pathogenesis-related (PR) genes. In this study, we demonstrated that overexpression of Tsi1 gene in transgenic hot pepper plants induced constitutive expression of several PR genes in the absence of stress or pathogen treatment. The transgenic hot pepper plants expressing Tsi1 exhibited resistance to Pepper mild mottle virus (PMMV) and Cucumber mosaic virus (CMV). Furthermore, these transgenic plants showed increased resistance to a bacterial pathogen, Xanthomonas campestris pv. vesicatoria and also an oomycete pathogen, Phytophthora capsici. These results suggested that ectopic expression of Tsi1 in transgenic hot pepper plants enhanced the resistance of the plants to various pathogens, including viruses, bacteria, and oomycete. These results suggest that using transcriptional regulatory protein genes may contribute to developing broad-spectrum resistance in crop plants.  (+info)