(1/2233) The posterior nasal nerve plays an important role on cardiopulmonary reflexes to nasal application of capsaicin, distilled water and l-menthol in anesthetized dogs.

The sensory innervation of the cardiopulmonary reflexes to nasal application of capsaicin (CAPS), distilled water (DW) and l-menthol (LM) was studied in anesthetized dogs breathing through tracheostomy. A marked cardiopulmonary reflex was observed by CAPS and DW into the nasal cavity, while a prolongation of expiration was induced by LM. All these reflexes were significantly decreased by bilateral section of the posterior nasal nerve (PNN) and completely abolished by topical nasal anesthesia with lidocaine. Responses of the whole nerve activity of the PNN to these substances corresponded to the magnitude of the reflexes. These results indicate that PNN afferents play an important role on the reflex elicitation of the noxious, water and cold stimuli from the nasal cavity.  (+info)

(2/2233) C-fiber depletion alters response properties of neurons in trigeminal nucleus principalis.

The effects of C-fiber depletion induced by neonatal capsaicin treatment on the functional properties of vibrissa-sensitive low-threshold mechanoreceptive (LTM) neurons in the rat trigeminal nucleus principalis were examined in adult rats. Neonatal rats were injected either with capsaicin or its vehicle within 48 h of birth. The depletion of unmyelinated afferents was confirmed by the significant decrease in plasma extravasation of Evan's blue dye induced in the hindlimb skin of capsaicin-treated rats by cutaneous application of mustard oil and by the significant decrease of unmyelinated fibers in both the sciatic and infraorbital nerves. The mechanoreceptive field (RF) and response properties of 31 vibrissa-sensitive neurons in capsaicin-treated rats were compared with those of 32 vibrissa-sensitive neurons in control (untreated or vehicle-treated) rats. The use of electronically controlled mechanical stimuli allowed quantitative analysis of response properties of vibrissa-sensitive neurons; these included the number of center- and surround-RF vibrissae within the RF (i.e., those vibrissae which when stimulated elicited >/=1 and <1 action potential per stimulus, respectively), the response magnitude and latency, and the selectivity of responses to stimulation of vibrissae in different directions with emphasis on combining both the response magnitude and direction of vibrissal deflection in a vector analysis. Neonatal capsaicin treatment was associated with significant increases in the total number of vibrissae, in the number of center-RF vibrissae per neuronal RF, and in the percentage of vibrissa-sensitive neurons that also responded to stimulation of other types of orofacial tissues. Compared with control rats, capsaicin-treated rats showed significant increases in the response magnitude to stimulation of surround-RF vibrissae as well as in response latency variability to stimulation of both center- and surround-RF vibrissae. C-fiber depletion also significantly altered the directional selectivity of responses to stimulation of vibrissae. For neurons with multiple center-RF vibrissae, the proportion of center-RF vibrissae with net vector responses oriented toward the same quadrant was significantly less in capsaicin-treated compared with control rats. These changes in the functional properties of principalis vibrissa-sensitive neurons associated with marked depletion of C-fiber afferents are consistent with similarly induced alterations in LTM neurons studied at other levels of the rodent somatosensory system, and indeed may contribute to alterations previously described in the somatosensory cortex of adult rodents. Furthermore, these results provide additional support to the view that C fibers may have an important role in shaping the functional properties of LTM neurons in central somatosensory pathways.  (+info)

(3/2233) Mechanisms of capsaicin- and lactic acid-induced bronchoconstriction in the newborn dog.

1. Capsaicin activation of the pulmonary C fibre vanilloid receptor (VR1) evokes the pulmonary chemoreflex and reflex bronchoconstriction. Among potential endogenous ligands of C fibre afferents, lactic acid has been suggested as a promising candidate. We tested the hypotheses that (a) lactic acid behaves as a stimulant of C fibre receptors in the newborn dog to cause reflex bronchoconstriction, and (b) lactic acid causes reflex bronchoconstriction via the same pulmonary C fibre receptor mechanism as capsaicin using the competitive capsaicin/VR1 receptor antagonist capsazepine. 2. Right heart injection of lactic acid caused a significant increase (47 +/- 8.0 %) in lung resistance (RL) that was atropine sensitive (reduced by 75 %; P < 0.05), consistent with reflex activation of muscarinic efferents by stimulation of C fibre afferents. 3. Infusion of the competitive capsaicin antagonist capsazepine caused an 80 % reduction (P < 0.01) in the control bronchoconstrictor response (41 +/- 8.5 % increase in RL) to right heart injections of capsaicin. The effects of capsazepine are consistent with reversible blockade of the VR1 receptor to abolish C fibre-mediated reflex bronchoconstriction. 4. Lactic acid-evoked increases in RL were unaffected by VR1 blockade with capsazepine, consistent with a separate lactic acid-induced reflex mechanism. 5. We conclude that (a) putative stimulation of C fibres with lactic acid causes reflex bronchoconstriction in the newborn dog, (b) capsazepine reversibly antagonizes reflex bronchoconstriction elicited by right heart injection of capsaicin, presumably by attenuating capsaicin-induced activation of the C fibre 'capsaicin' receptor (VR1), and (c) capsazepine resistance of lactic acid-induced bronchoconstriction indicates that lactic acid evokes reflex bronchoconstriction by a separate mechanism, possibly via the acid-sensing ionic channel.  (+info)

(4/2233) The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat.

1. The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. 2. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. 3. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a '12-train' series, an increasing inhibition. 4. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. 5. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. 6. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots.  (+info)

(5/2233) The effects of inflammation and inflammatory mediators on nociceptive behaviour induced by ATP analogues in the rat.

1. We have studied the behavioural effects of intraplantar injections of adenosine 5'-triphosphate (ATP) and related compounds in freely moving rats and investigated whether these nociceptive effects are augmented in the presence of inflammatory mediators. 2. We find that in normal animals ATP and analogues produce dose-dependent nocifensive behaviour (seen as bursts of elevation of the treated hindpaw), and localized thermal hyperalgesia. The rank order of potency was: alpha,beta-methyleneadenosine 5'-triphosphate (alpha,beta-methylene ATP) > 2-methylthioadenosine triphosphate (2-methylthio ATP) > ATP. After neonatal treatment with capsaicin, to destroy small calibre primary sensory neurones, nocifensive behaviour was largely absent. 3. The effects of ATP analogues were assessed in three models of peripheral sensitization: 2 h after dilute intraplantar carrageenan (0.25% w v(-1)); 24 h after irradiation of the hindpaw with ultraviolet (U.V.) B; immediately following prostaglandin E2 (PGE2) treatment. In all models the effect of alpha,beta-methylene ATP was greatly augmented. After carrageenan, significant hindpaw-lifting behaviour activity was induced by injection of only 0.05 nmol of alpha,beta-methylene ATP, some 100 times less than necessary in normal skin. 4. Our data suggest that it is much more likely that endogenous levels of ATP will reach levels capable of exciting nociceptors in inflamed versus normal skin. Our data also suggest the involvement of P2X3 receptor subunits in ATP-induced nociception.  (+info)

(6/2233) Capsaicin-sensitive C-fiber-mediated protective responses in ozone inhalation in rats.

To assess the role of lung sensory C fibers during and after inhalation of 1 part/million ozone for 8 h, we compared breathing pattern responses and epithelial injury-inflammation-repair in rats depleted of C fibers by systemic administration of capsaicin as neonates and in vehicle-treated control animals. Capsaicin-treated rats did not develop ozone-induced rapid, shallow breathing. Capsaicin-treated rats showed more severe necrosis in the nasal cavity and greater inflammation throughout the respiratory tract than did control rats exposed to ozone. Incorporation of 5-bromo-2'-deoxyuridine (a marker of DNA synthesis associated with proliferation) into terminal bronchiolar epithelial cells was not significantly affected by capsaicin treatment in rats exposed to ozone. However, when normalized to the degree of epithelial necrosis present in each rat studied, there was less 5-bromo-2'-deoxyuridine labeling in the terminal bronchioles of capsaicin-treated rats. These observations suggest that the ozone-induced release of neuropeptides does not measurably contribute to airway inflammation but may play a role in modulating basal and reparative airway epithelial cell proliferation.  (+info)

(7/2233) Impact of development and chronic hypoxia on NE release from adrenergic nerves in sheep arteries.

To examine effects of development and chronic high-altitude hypoxia on sympathetic nerve function in sheep, norepinephrine release was measured in vitro from middle cerebral and facial arteries. Capsaicin was used to test the role of capsaicin-sensitive sensory nerves; norepinephrine release was not altered by capsaicin treatment. Nomega-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthase, decreased stimulation-evoked norepinephrine release in middle cerebral arteries from normoxic sheep with no effect in hypoxic arteries or facial arteries. Thus NO-releasing nerves augmented norepinephrine release. Furthermore, the function of NO-releasing nerves declined after chronic hypoxia. Despite loss of the augmenting effects of NO, stimulation-evoked fractional norepinephrine release was unchanged after chronic hypoxia, suggesting that middle cerebral arteries adapt to hypoxia by increasing stimulation-evoked norepinephrine release. In fetal facial arteries, chronic hypoxia resulted in a decline in stimulation-evoked norepinephrine release, but there was an increase in the adult facial artery. In the adult, adaptation to chronic hypoxia is similar in both cerebral and facial arteries. However, differential adaptation in fetal adrenergic nerves may reflect differences in fetal redistribution of blood flow in the face of chronic hypoxia but could also possibly contribute to increased incidence of fetal morbidity.  (+info)

(8/2233) Cell type-specific ATP-activated responses in rat dorsal root ganglion neurons.

1. The aim of our study is to clarify the relationship between expression pattern of P2X receptors and the cell type of male adult rat (Wistar) dorsal root ganglion (DRG) neurons. We identified the nociceptive cells of acutely dissociated DRG neurons from adult rats type using capsaicin sensitivity. 2. Two types of ATP-activated currents, one with fast, the other with slow desensitization, were found under voltage-clamp conditions. In addition, cells with fast but not slow desensitization responded to capsaicin, indicating that there was a relationship between current kinetics and capsaicin-sensitivity. 3. Both types of neurons were responsive to ATP and alpha, beta methylene-ATP (alpha,betameATP). The concentration of alpha,(beta)meATP producing half-maximal activation (EC50) of neurons with fast desensitization was less (11 microM) than that of neurons with slow desensitization (63 microM), while the Hill coefficients were similar. Suramin and pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid tetrasodium (PPADS) antagonized alpha,betameATP-induced currents in both types of neurons. 4. In situ hybridization revealed that small cells of the DRG predominantly expressed mRNAs of P2X3 and medium-sized cells expressed mRNAs of P2X2 and P2X3. In contrast, both of mRNAs were not detected in large cells of the DRG. 5. These results suggest that capsaicin-sensitive, small-sized DRG neurons expressed mainly the homomeric P2X3 subunit and that capsaicin-insensitive, medium-sized DRG neurons expressed the heteromultimeric receptor with P2X2 and P2X3.  (+info)