Neanderthal cannibalism at Moula-Guercy, Ardeche, France. (1/63)

The cave site of Moula-Guercy, 80 meters above the modern Rhone River, was occupied by Neanderthals approximately 100,000 years ago. Excavations since 1991 have yielded rich paleontological, paleobotanical, and archaeological assemblages, including parts of six Neanderthals. The Neanderthals are contemporary with stone tools and faunal remains in the same tightly controlled stratigraphic and spatial contexts. The inference of Neanderthal cannibalism at Moula-Guercy is based on comparative analysis of hominid and ungulate bone spatial distributions, modifications by stone tools, and skeletal part representations.  (+info)

Electrolocation-communication discharges of the fish Gymnotus carapo L. (Gymnotidae: Gymnotiformes) during behavioral sleep. (2/63)

Technical problems have hampered the study of sleep in teleosts. The electrical discharges of Gymnotus carapo L. (Gymnotidae: Gymnotiformes) were monitored to evaluate their ease and reliability as parameters to study sleep. The discharges were detected by electrodes immersed in a glass aquarium and were recorded on a conventional polygraph. G. carapo showed conspicuous signs of behavioral sleep. During these periods, opercular beat rates were counted, electric discharges recorded, and the "sharp discharge increase" (SDI) of the orienting reflex was investigated. All 20 animals monitored maintained electrical discharges during behavioral sleep. The discharge frequencies during sleep (50.3 +/- 10.4 Hz) were not significantly different from those observed when the fish was awake and inactive (57.2 +/- 12.1 Hz) (Wilcoxon matched-pairs signed-ranks test, P>0.05). However, the SDI, which was prevalent in the awake fish, was not observed during periods of behavioral sleep. Additional observations showed that the species had cannibalistic habits. When presented with electrical discharges from a conspecific, the sleeping fish showed an initial decrease or pause in discharge frequency, while the awake fish did not have this response. We conclude that the electrical discharges of G. carapo were not conspicuous indicators of behavioral sleep. Discharges may have been maintained during sleep for sensory purposes, i.e., conspecific detection and avoidance of cannibalistic attacks.  (+info)

Group selections among laboratory populations of Tribolium. (3/63)

Selection at the population level or group selection is defined as genetic change that is brought about or maintained by the differential extinction and/or proliferation of populations. Group selection for both increased and decreased adult population size was carried out among laboratory populations of Tribolium castaneum at 37-day intervals. The effect of individual selection within populations on adult population size was evaluated in an additional control series of populations. The response in the group selection treatments occurred rapidly, within three or four generations, and was large in magnitude, at times differing from the controls by over 200%. This response to selection at the populational level occurred despite strong individual selection which caused a decline in the mean size of the control populations from over 200 adults to near 50 adults in nine 37-day intervals. "Assay" experiments indicated that selective changes in fecundity, developmental time, body weight, and cannibalism rates were responsible in part for the observed treatment differences in adult population size. These findings have implications in terms of speciation in organisms whose range is composed of many partially isolated local populations.  (+info)

Does fitness erode in the absence of selection? An experimental test with Tribolium. (4/63)

In the absence of natural selection, average fitness in the population is expected to decline due to the accumulation of deleterious mutations. Replicate populations of flour beetles (Tribolium confusum) were maintained for 22 generations in the virtual absence of selection (random mating, favorable environment, excess of food, and mortality of only 3%). Larva-to-adult survivorship rates were similar in the stock population and selection-free populations. In contrast, starvation resistance of adult beetles from selection-free populations was significantly reduced (by more than 2% per generation). When tested in the favorable environment, beetles in one selection-free population had significantly slower development and smaller sizes of females than beetles from the stock population. Since such changes in these fitness components are usually maladaptive, they indicate possible erosion of fitness under relaxed selection at the rate of 0.1-0.2% per generation. No fitness erosion was detectable in the second selection-free population.  (+info)

Changes in expression and honesty of sexual signalling over the reproductive lifetime of sticklebacks. (5/63)

Fitness costs of signalling are essential in order for reliable sexual signalling to prevail when the interests of the sexes conflict. This means that signalling can be subjected to a life history trade-off between present and future signalling effort. Here, I show that three-spined stickleback males (Gasterosteus aculeatus), who have a single breeding season during which they breed repeatedly, change their red nuptial coloration over the season depending on their body size at the start of breeding. Large males that completed several breeding cycles increased their red coloration over the season, whereas small males, who completed only a few cycles, did not. The increase in coloration was accompanied by an increase in parental success when males were energy constrained, but not when they had access to an unlimited food supply. Red coloration was thus an honest signal of male parental ability despite changes in signal expression when both signalling and parental care were costly and the investments in them changed simultaneously over the reproductive lifetime. However, the honesty of the signal varied over a lifetime. At the penultimate cycle, bright males cannibalized some of their eggs, probably to increase survival to the last cycle, whereas males cared for their offspring independent of coloration at the ultimate cycle.  (+info)

Female control of paternity in the sexually cannibalistic spider Argiope keyserlingi. (6/63)

Sexual conflict theory predicts an antagonistic coevolution, with each sex evolving adaptations and counter-adaptations to overcome a temporary dominance of the other sex over the control of paternity. Polyandry allows sexual selection to operate after mating has commenced, with male and female interests competing for control of fertilization. There are numerous examples of male control of paternity, but few studies have unambiguously revealed female control. Attributing variance in paternity to females is often difficult since male and female influences cannot be separated unambiguously. However, we show that polyandrous female orb-web spiders Argiope keserlingi (Arancidae) control the paternity of their offspring by adjusting the timing of sexual cannibalism. Our experiments reveal that females copulating with relatively smaller males delay sexual cannibalism, thereby prolonging the duration of copulation, and that these males consequently fertilize relatively more eggs.  (+info)

Low metabolic rate in scorpions: implications for population biomass and cannibalism. (7/63)

Scorpions are abundant in arid areas, where their population biomass may exceed that of vertebrates. Since scorpions are predators of small arthropods and feed infrequently across multi-year lifespans, a parsimonious explanation for their observed, anomalously high biomass may be a depressed metabolic rate (MR). We tested the hypothesis that scorpion MR is significantly depressed compared with that of other arthropods, and we also measured the temperature-dependence of the MR of scorpions to quantify the interaction between large seasonal variations in desert temperatures and MR and, thus, long-term metabolic expenditure. Scorpion MR increased markedly with temperature (mean Q(10)=2.97) with considerable inter-individual variation. At 25 degrees C, the MRs of scorpions from two genera were less than 24 % of those of typical terrestrial arthropods (spiders, mites, solpugids and insects) of the same mass. It is likely, therefore, that the low MR of scorpions contributes to their high biomass in arid areas. The combination of high biomass and high production efficiency associated with low MR may also favor a density-dependent "transgenerational energy storage" strategy, whereby juveniles are harvested by cannibalistic adults that may be closely related to their juvenile prey.  (+info)

Genetic documentation of filial cannibalism in nature. (8/63)

Cannibalism is widespread in natural populations of fishes, where the stomachs of adults frequently contain conspecific juveniles. Furthermore, field observations suggest that guardian males routinely eat offspring from their own nests. However, recent genetic paternity analyses have shown that fish nests often contain embryos not sired by the nest-tending male (because of cuckoldry events, egg thievery, or nest piracy). Such findings, coupled with the fact that several fish species have known capabilities for distinguishing kin from nonkin, raise the possibility that cannibalism by guardian males is directed primarily or exclusively toward unrelated embryos in their nests. Here, we test this hypothesis by collecting freshly cannibalized embryos from the stomachs of several nest-tending darter and sunfish males in nature and determining their genetic parentage by using polymorphic microsatellite markers. Our molecular results clearly indicate that guardian males do indeed consume their own genetic offspring, even when unrelated (foster) embryos are present within the nest. These data provide genetic documentation of filial cannibalism in nature. Furthermore, they suggest that the phenomenon may result, at least in part, from an inability of guardians to differentiate between kin and nonkin within their own nests.  (+info)