Isolation and molecular evolution of the selenocysteine tRNA (Cf TRSP) and RNase P RNA (Cf RPPH1) genes in the dog family, Canidae. (1/27)

In an effort to identify rapidly evolving nuclear sequences useful for phylogenetic analyses of closely related species, we isolated two genes transcribed by RNA polymerase III (pol III), the selenocysteine tRNA gene (TRSP) and an RNase P RNA (RPPH1) gene from the domestic dog (Canis familiaris). We focus on genes transcribed by pol III because their coding regions are small (generally 100-300 base pairs [bp]) and their essential promoter elements are located within a couple of hundred bps upstream of the coding region. Therefore, we predicted that regions flanking the coding region and outside of the promoter elements would be free of constraint and would evolve rapidly. We amplified TRSP from 23 canids and RPPH1 from 12 canids and analyzed the molecular evolution of these genes and their utility as phylogenetic markers for resolving relationships among species in Canidae. We compared the rate of evolution of the gene-flanking regions to other noncoding regions of nuclear DNA (introns) and to the mitochondrial encoded COII gene. Alignment of TRSP from 23 canids revealed that regions directly adjacent to the coding region display high sequence variability. We discuss this pattern in terms of functional mechanisms of transcription. Although the flanking regions evolve no faster than introns, both genes were found to be useful phylogenetic markers, in part, because of the synapomorphic indels found in the flanking regions. Gene trees generated from the TRSP and RPPH1 loci were generally in agreement with the published mtDNA phylogeny and are the first phylogeny of Canidae based on nuclear sequences.  (+info)

Sarcocystosis of chital-dhole: conditions for evolutionary stability of a predator parasite mutualism. (2/27)

BACKGROUND: For parasites with a predator-prey life cycle, the completion of the life cycle often depends on consumption of parasitized prey by the predator. In the case of such parasite species the predator and the parasite have common interests and therefore a mutualistic relationship is possible. Some evidence of a predator-parasite mutualism was reported from spotted deer or chital (Axix axis) as a prey species, dhole or Indian wild-dog (Cuon alpinus) as the predator and a protozoan (Sarcocystis axicuonis) as the parasite. We examine here, with the help of a model, the ecological conditions necessary for the evolution and stability of such a mutualistic relationship. A two - level game theory model was designed in which the payoff of a parasite is decided not only by alternative parasite strategies but also by alternative host strategies and vice versa. Conditions for ESS were examined. RESULTS: A tolerant predator strategy and a low or moderately virulent parasite strategy which together constitute mutualism are stable only at a high frequency of recycling of parasite and a substantial prey - capture benefit to the predator. Unlike the preliminary expectation, parasite will not evolve towards reduced virulence, but reach an optimum moderate level of virulence. CONCLUSION: The available data on the behavioral ecology of dhole and chital suggest that they are likely to meet the stability criteria and therefore a predator-parasite mutualism can be stable in this system. The model also points out the gaps in the current data and could help directing further empirical work.  (+info)

Dental development of Didelphis albiventris (Marsupialia): I--incisors and canines. (3/27)

The formation of incisors and canines in marsupials of D. albiventris was studied at various stages of development. Seventy-six specimens, with ages varying from 0 to 100 days, were used in this investigation. Serial sections of the maxilla were obtained in the transverse plane and stained with hematoxylin and eosin. Histological analyses were made to verify the pattern of teeth development, as well as their chronology of eruption. The period of time from birth to 100 days comprised the entire process of teeth development, from epithelial bud formation to early eruption of the teeth. Oral epithelium thickening gave rise to the functional incisors and canines. In addition, a secondary dental lamina emerged in different phases of development in the outer epithelium of incisors and canines, which degenerated when it reached the bud stage. No evidence of deciduous dentition was observed. The results of this investigation suggest that secondary dental lamina represents remnants of a primitive condition in which secondary dentition used to be present.  (+info)

Serologic evidence of Leishmania infection in free-ranging wild and domestic canids around a Brazilian National Park. (4/27)

Transmission of disease between wildlife, domestic animals, and humans is of great concern to conservation issues and public health. Here we report on the prevalence of anti-Leishmania sp. antibodies in 21 wild canids (7 Chrysocyon brachyurus, 12 Cerdocyon thous, and 2 Lycalopex vetulus) and 74 free domestic dogs (Canis familiaris) sampled around the Serra do Cipo National Park. In dogs, the apparent prevalence was 8.1% and in wild canids it was 19% (2 crab-eating foxes, C. thous, and 2 maned wolves, C. brachyurus). Management of the domestic dog population with evaluation of incidence changes in humans and wildlife, and enlightenment on the role of wild reservoirs are essential issues for future action and research.  (+info)

The singular history of a canine transmissible tumor. (5/27)

In this issue of Cell, Murgia et al. (2006) confirm that the infectious agent of canine transmissible venereal tumor is the cancer cell itself and that the tumor is clonal in origin. Their findings have implications for understanding the relationship between genome instability and transmissible cancer and for conservation biology, canine genomics, and companion animal medicine.  (+info)

Clonal origin and evolution of a transmissible cancer. (6/27)

The transmissible agent causing canine transmissible venereal tumor (CTVT) is thought to be the tumor cell itself. To test this hypothesis, we analyzed genetic markers including major histocompatibility (MHC) genes, microsatellites, and mitochondrial DNA (mtDNA) in naturally occurring tumors and matched blood samples. In each case, the tumor is genetically distinct from its host. Moreover, tumors collected from 40 dogs in 5 continents are derived from a single neoplastic clone that has diverged into two subclades. Phylogenetic analyses indicate that CTVT most likely originated from a wolf or an East Asian breed of dog between 200 and 2500 years ago. Although CTVT is highly aneuploid, it has a remarkably stable genotype. During progressive growth, CTVT downmodulates MHC antigen expression. Our findings have implications for understanding genome instability in cancer, natural transplantation of allografts, and the capacity of a somatic cell to evolve into a transmissible parasite.  (+info)

Elevated basal slippage mutation rates among the Canidae. (7/27)

The remarkable responsiveness of dog morphology to selection is a testament to the mutability of mammals. The genetic sources of this morphological variation are largely unknown, but some portion is due to tandem repeat length variation in genes involved in development. Previous analysis of tandem repeats in coding regions of developmental genes revealed fewer interruptions in repeat sequences in dogs than in the orthologous repeats in humans, as well as higher levels of polymorphism, but the fragmentary nature of the available dog genome sequence thwarted attempts to distinguish between locus-specific and genome-wide origins of this disparity. Using whole-genome analyses of the human and recently completed dog genomes, we show that dogs possess a genome-wide increase in the basal germ-line slippage mutation rate. Building on the approach that gave rise to the initial observation in dogs, we sequenced 55 coding repeat regions in 42 species representing 10 major carnivore clades and found that a genome-wide elevated slippage mutation rate is a derived character shared by diverse wild canids, distinguishing them from other Carnivora. A similarly heightened slippage profile was also detected in rodents, another taxon exhibiting high diversity and rapid evolvability. The correlation of enhanced slippage rates with major evolutionary radiations suggests that the possession of a "slippery" genome may bestow on some taxa greater potential for rapid evolutionary change.  (+info)

Capillaria spp. eggs in Patagonian archaeological sites: statistical analysis of morphometric data. (8/27)

Discriminant analysis was used to identify eggs of Capillaria spp. at specific level found in organic remains from an archaeological site in Patagonia, Argentina, dated of 6,540 +/- 110 years before present. In order to distinguish eggshell morphology 149 eggs were measured and grouped into four arbitrary subsets. The analysis used on egg width and length discriminated them into different morphotypes (Wilks' lambda = 0.381, p < 0.05). The correlation analysis suggests that width was the most important variable to discriminate among the Capillaria spp. egg morphotypes (Pearson coefficient = 0.950, p < 0.05). The study of eggshell patterns, the relative frequency in the sample, and the morphometric data allowed us to correlate the four morphotypes with Capillaria species.  (+info)