Phenotypic switching and mating type switching of Candida glabrata at sites of colonization. (25/351)

Candida glabrata switches spontaneously at high frequency among the following four graded phenotypes discriminated on agar containing 1 mM CuSO(4): white, light brown, dark brown (DB), and very dark brown. C. glabrata also contains three mating type loci with a configuration similar to that of the Saccharomyces cerevisiae mating type cassette system, suggesting it may also undergo cassette switching at the expression locus MTL1. To analyze both reversible, high-frequency phenotypic switching and mating type switching at sites of colonization, primary samples from the oral cavities and vaginal canals of three patients suffering from C. glabrata vaginitis were clonally plated on agar containing CuSO(4). It was demonstrated that (i) in each vaginitis patient, there was only one colonizing strain; (ii) an individual could have vaginal colonization without oral colonization; (iii) phenotypic switching occurred at sites of colonization; (iv) the DB phenotype predominated at the site of infection in all three patients; (v) genetically unrelated strains switched in similar, but not identical, fashions and caused vaginal infection; (vi) different switch phenotypes of the same strain could simultaneously dominate different body locations in the same host; (vii) pathogenesis could be caused by cells in different mating type classes; and (viii) mating type switching demonstrated at both the genetic and transcription levels occurred in one host.  (+info)

Rapid identification of commonly encountered Candida species directly from blood culture bottles. (26/351)

We report a rapid-cycle, real-time PCR method for identifying six Candida spp. directly from BACTEC blood culture bottles. Target sequences in the noncoding internal transcribed spacer regions of the rRNA operon were simultaneously amplified and interrogated with fluorescent probes to identify Candida albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, and C. lusitaniae; these account for 88% of the yeast species isolated from positive blood cultures in our laboratory. Any of the first four species can be identified in a single reaction using two fluorescent hybridization probe sets. The antifungal-resistant species C. krusei and C. lusitaniae are detected in a second reaction, also with two probe sets. The assay was validated with DNA extracted from BACTEC blood culture bottles positive for yeasts (n = 62) and was 100% concordant with culture identification based on biochemical and morphological features of C. albicans (n = 22), C. parapsilosis (n = 10), C. tropicalis (n = 1) C. glabrata (n = 22), C. krusei (n = 2), and C. lusitaniae (n = 1). No cross-reactivity was observed in blood culture samples growing yeasts other than the above-mentioned species (n = 4), in those growing bacteria (n = 12), or in the absence of microbial growth. Our assay allows rapid (+info)

Multilocus sequence typing of Candida glabrata reveals geographically enriched clades. (27/351)

The haploid pathogenic yeast Candida glabrata is the second most common Candida species isolated from cases of bloodstream infection. The clinical relevance of C. glabrata is enhanced by its reduced susceptibility to fluconazole. Despite this, little is known of the epidemiology or population structure of this species. We developed a multilocus sequence typing (MLST) scheme for C. glabrata and used it to fingerprint a geographically diverse collection of 107 clinical isolates and 2 reference strains. Appropriate loci were identified by amplifying and sequencing fragments of the coding regions of 11 C. glabrata genes in 10 unrelated isolates. The 6 most variable loci (FKS, LEU2, NMT1, TRP1, UGP1, and URA3) were sequenced in the collection of 109 isolates. From the 3,345 bp sequenced in each isolate, 81 nucleotide sites were found to be variable. These defined 30 STs among the 109 strains. The technique was validated by comparison with random amplified polymorphic DNA and the complex DNA fingerprinting probes Cg6 and Cg12. MLST identified 5 major clades among the isolates studied. Three of the clades exhibited significant geographical bias. Our data demonstrate for the first time, with such a large geographically diverse strain collection, that distinct genetic clades of C. glabrata prevail in different geographical regions.  (+info)

Caspofungin activity against clinical isolates of fluconazole-resistant Candida. (28/351)

A total of 7,837 clinical isolates of Candida were tested against fluconazole, and 351 resistant (fluconazole MIC >/=64 micro g/ml) isolates were identified (4% of the total tested). All fluconazole-resistant isolates were inhibited by caspofungin at concentrations that can be exceeded by standard doses (MIC at which 90% of the isolates were inhibited, 1 micro g/ml; 99% of the MICs were +info)

Expression of plasma coagulase among pathogenic Candida species. (29/351)

Candida coagulase production was assessed by the classical tube test. All Candida krusei strains were coagulase negative, but most C. albicans and C. tropicalis strains can produce coagulase. Some strains agglutinated the Pastorex Staph-Plus reagent, probably because of antigen similarities to coagulase produced by Staphylococcus aureus that may cause mistakes in clinical laboratories.  (+info)

Viral preprotoxin signal sequence allows efficient secretion of green fluorescent protein by Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. (30/351)

Besides its importance as model organism in eukaryotic cell biology, yeast species have also developed into an attractive host for the expression, processing, and secretion of recombinant proteins. Here we investigated foreign protein secretion in four distantly related yeasts (Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe) by using green fluorescent protein (GFP) as a reporter and a viral secretion signal sequence derived from the K28 preprotoxin (pptox), the precursor of the yeast K28 virus toxin. In vivo expression of GFP fused to the N-terminal pptox leader sequence and/or expression of the entire pptox gene was driven either from constitutive (PGK1 and TPI1) or from inducible and/or repressible (GAL1, AOX1, and NMT1) yeast promoters. In each case, GFP entered the secretory pathway of the corresponding host cell; confocal fluorescence microscopy as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analysis of cell-free culture supernatants confirmed that GFP was efficiently secreted into the culture medium. In addition to the results seen with GFP, the full-length viral pptox was correctly processed in all four yeast genera, leading to the secretion of a biologically active virus toxin. Taken together, our data indicate that the viral K28 pptox signal sequence has the potential for being used as a unique tool in recombinant protein production to ensure efficient protein secretion in yeast.  (+info)

Inactivation of transcription factor gene ACE2 in the fungal pathogen Candida glabrata results in hypervirulence. (31/351)

During an infection, the coordinated orchestration of many factors by the invading organism is required for disease to be initiated and to progress. The elucidation of the processes involved is critical to the development of a clear understanding of host-pathogen interactions. For Candida species, the inactivation of many fungal attributes has been shown to result in attenuation. Here we demonstrate that the Candida glabrata homolog of the Saccharomyces cerevisiae transcription factor gene ACE2 encodes a function that mediates virulence in a novel way. Inactivation of C. glabrata ACE2 does not result in attenuation but, conversely, in a strain that is hypervirulent in a murine model of invasive candidiasis. C. glabrata ace2 null mutants cause systemic infections characterized by fungal escape from the vasculature, tissue penetration, proliferation in vivo, and considerable overstimulation of the proinflammatory arm of the innate immune response. Compared to the case with wild-type fungi, mortality occurs much earlier in mice infected with C. glabrata ace2 cells, and furthermore, 200-fold lower doses are required to induce uniformly fatal infections. These data demonstrate that C. glabrata ACE2 encodes a function that plays a critical role in mediating the host-Candida interaction. It is the first virulence-moderating gene to be described for a Candida species.  (+info)

Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. (32/351)

The pathogenic yeast Candida glabrata exhibits innate resistance to fluconazole, the most commonly used antifungal agent. By screening a library of 9,216 random insertion mutants, we identified a set of 27 genes which upon mutation, confer altered fluconazole susceptibility in C. glabrata. Homologues of three of these genes have been implicated in azole and/or drug resistance in Saccharomyces cerevisiae: two of these belong to the family of ABC transporters (PDR5 and PDR16), and one is involved in retrograde signaling from mitochondria to nucleus (RTG2). The remaining 24 genes are involved in diverse cellular functions, including ribosomal biogenesis and mitochondrial function, activation of RNA polymerase II transcription, nuclear ubiquitin ligase function, cell wall biosynthesis, and calcium homeostasis. We characterized two sets of mutants in more detail. Strains defective in a putative plasma membrane calcium channel (Cch1-Mid1) were modestly more susceptible to fluconazole but showed a significant loss of viability upon prolonged fluconazole exposure, suggesting that calcium signaling is required for survival of azole stress in C. glabrata. These mutants were defective in calcium uptake in response to fluconazole exposure. The combined results suggest that, in the absence of Ca(2+) signaling, fluconazole has a fungicidal rather than a fungistatic effect on C. glabrata. The second set of mutants characterized in detail were defective in mitochondrial assembly and organization, and these exhibited very high levels of fluconazole resistance. Further analysis of these mutants indicated that in C. glabrata a mechanism exists for reversible loss of mitochondrial function that does not involve loss of mitochondrial genome and that C. glabrata can switch between states of mitochondrial competence and incompetence in response to fluconazole exposure.  (+info)