Engineering the CYP101 system for in vivo oxidation of unnatural substrates. (17/184)

The protein engineering of CYP enzymes for structure-activity studies and the oxidation of unnatural substrates for biotechnological applications will be greatly facilitated by the availability of functional, whole-cell systems for substrate oxidation. We report the construction of a tricistronic plasmid that expresses the CYP101 monooxygenase from Pseudomonas putida, and its physiological electron transfer co-factor proteins putidaredoxin reductase and putidaredoxin in Escherichia coli, giving a functional in vivo catalytic system. Wild-type CYP101 expressed in this system efficiently transforms camphor to 5-exo-hydroxycamphor without further oxidation to 5-oxo-camphor until >95% of camphor has been consumed. CYP101 mutants with increased activity for the oxidation of diphenylmethane (the Y96F-I395G mutant), styrene and ethylbenzene (the Y96F-V247L mutant) have been engineered. In particular, the Y96F-V247L mutant shows coupling efficiency of approximately 60% for styrene and ethylbenzene oxidation, with substrate oxidation rates of approximately 100/min. Escherichia coli cells transformed with tricistronic plasmids expressing these mutants readily gave 100-mg quantities of 4-hydroxydiphenylmethane and 1-phenylethanol in 24-72 h. This new in vivo system can be used for preparative scale reactions for product characterization, and will greatly facilitate directed evolution of the CYP101 enzyme for enhanced activity and selectivity of substrate oxidation.  (+info)

Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine. (18/184)

Understanding the mechanism and specificity of substrate binding in the cytochrome P450 (P450) superfamily is an important step toward explaining its key role in drug metabolism, toxicity, xenobiotic degradation, and several biosynthetic pathways. Here we investigate the ligand exit pathways and mechanisms of P450cam (CYP101), P450BM-3 (CYP102), and P450eryF (CYP107A1) by using random expulsion molecular dynamics and classical molecular dynamics simulations. Although several different pathways are found for each protein, one pathway is common to all three. The mechanism of ligand exit along this pathway is, however, quite different in the three different proteins. For P450cam, small backbone conformational changes, in combination with aromatic side chain rotation, allow for the passage of the rather rigid, compact, and hydrophobic substrate, camphor. In P450BM-3, larger transient backbone changes are observed on ligand exit. R47, situated at the entrance to the channel, appears important in guiding negatively charged fatty acid substrates in and out of the active site. In P450eryF, an isolated buried arginine, R185, stabilized by four hydrogen bonds to backbone carbonyl oxygen atoms, is located in the exit channel and is identified as having a particularly unusual functionality, dynamically gating channel opening. The results for these three P450s suggest that the channel opening mechanisms are adjusted to the physico-chemical properties of the substrate and can kinetically modulate protein-substrate specificity.  (+info)

Confirmation of uterotrophic activity of 3-(4-methylbenzylidine)camphor in the immature rat. (19/184)

In this study we found that the ultraviolet sunscreen component 3-(4-methylbenzylidine)camphor (4MBC) is uterotrophic in immature rats when administered by either subcutaneous injection or oral gavage. These data confirm earlier reports of uterotrophic activity for this agent when administered to immature rats in the diet or by whole-body immersion; however, they are in contrast to negative unpublished immature rat uterotrophic assay results. Data also indicate that 4MBC binds to isolated rat uterine estrogen receptors and shows activity in a human estrogen receptor yeast transactivation assay; however, we considered both of these effects equivocal. In this study, we confirmed the original observation that 4MBC was active as a mitogen to MCF-7 breast cancer cells. We evaluated and discounted the possibility that the estrogenic activity of 4MBC is related to its bulky camphor group, which is of similar molecular dimensions to that of the weak estrogen kepone. Uncertainty remains regarding the mechanism of the uterotrophic activity of 4MBC.  (+info)

Substrates modulate the rate-determining step for CO binding in cytochrome P450cam (CYP101). A high-pressure stopped-flow study. (20/184)

The high-pressure stopped-flow technique is applied to study the CO binding in cytochrome P450cam (P450cam) bound with homologous substrates (1R-camphor, camphane, norcamphor and norbornane) and in the substrate-free protein. The activation volume DeltaV # of the CO on-rate is positive for P450cam bound with substrates that do not contain methyl groups. The kon rate constant for these substrate complexes is in the order of 3 x 10(6) M(-1) x s(-1). In contrast, P450cam complexed with substrates carrying methyl groups show a negative activation volume and a low kon rate constant of approximately 3 x 10(4) M(-1) x s(-1). By relating kon and DeltaV # with values for the compressibility and the influx rate of water for the heme pocket of the substrate complexes it is concluded that the positive activation volume is indicative for a loosely bound substrate that guarantees a high solvent accessibility for the heme pocket and a very compressible active site. In addition, subconformers have been found for the substrate-free and camphane-bound protein which show different CO binding kinetics.  (+info)

Peripheral heme substituents control the hydrogen-atom abstraction chemistry in cytochromes P450. (21/184)

We elucidate the hydroxylation of camphor by cytochrome P450 with the use of density functional and mixed quantum mechanics/molecular mechanics methods. Our results reveal that the enzyme catalyzes the hydrogen-atom abstraction step with a remarkably low free-energy barrier. This result provides a satisfactory explanation for the experimental failure to trap the proposed catalytically competent high-valent heme Fe(IV) oxo (oxyferryl) species responsible for this hydroxylation chemistry. The primary and previously unappreciated contribution to stabilization of the transition state is the interaction of positively charged residues in the active-site cavity with carboxylate groups on the heme periphery. A similar stabilization found in dioxygen binding to hemerythrin, albeit with reversed polarity, suggests that this mechanism for controlling the relative energetics of redox-active intermediates and transition states in metalloproteins may be widespread in nature.  (+info)

Phenotypic characterization of overexpression or deletion of the Escherichia coli crcA, cspE and crcB genes. (22/184)

The authors have previously shown that overexpression of the Escherichia coli K-12 crcA, cspE and crcB genes protects the chromosome from decondensation by camphor. In this study they examine the phenotypic consequences of deleting or overexpressing crcA, cspE and crcB. Overexpressing crcA, cspE and crcB increases supercoiling levels of plasmids in wild-type cells and in temperature-sensitive (Ts) gyrase mutants, suppresses the sensitivity of gyrase and topoisomerase IV (topo IV) Ts mutants to nalidixic acid, makes gyrase and topo IV Ts mutants more resistant to camphor and corrects the nucleoid morphology defects in topo IV Ts mutants. Overexpression of crcA, cspE and crcB results in a slight (2.2-fold) activation of the rcsA gene. Deleting crcA, cspE and crcB is not lethal to cells but results in an increase in sensitivity to camphor. Deletion of crcA, cspE and crcB exacerbates the nucleoid morphology defects of the topo IV Ts mutants. When the individual crcA, cspE or crcB genes were tested for their effects on camphor resistance and regulation of rcsA, cspE alone conferred 10-fold camphor resistance and 1.7-fold activation of rcsA. These activities were augmented when crcB was overexpressed with cspE (100-fold camphor resistance and 2.1-fold induction of rcsA).  (+info)

Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. (23/184)

How do we estimate, from thermodynamic measurements, the number of water molecules adsorbed or released from biomolecules as a result of a biochemical process such as binding and allosteric effects? Volumetric and osmotic stress analyses are established methods for estimating water numbers; however, these techniques often yield conflicting results. In contrast, Kirkwood-Buff theory offers a novel way to calculate excess hydration number from volumetric data, provides a quantitative condition to gauge the accuracy of osmotic stress analysis, and clarifies the relationship between osmotic and volumetric analyses. I have applied Kirkwood-Buff theory to calculate water numbers for two processes: (i) the allosteric transition of hemoglobin and (ii) the binding of camphor to cytochrome P450. I show that osmotic stress analysis may overestimate hydration number changes for these processes.  (+info)

Protective effect of Arque-Ajeeb on acute experimental diarrhoea in rats. (24/184)

BACKGROUND: Diarrhoea is a major health problem for children worldwide, accounting for 5-8 million deaths each year. Arque-Ajeeb (AA) is a compound formulation of Unani medicine. It is reputed for its beneficial effects in the treatment of diarrhoea and cholera, but the claim of its efficacy is yet to be tested. Therefore the present study has been planned to investigate the real efficacy of this drug in rats. METHODS: The effect of Arque-Ajeeb was investigated for antidiarrhoeal activity against charcoal-induced gut transit, serotonin-induced diarrhoea and PGE2-induced small intestine enteropooling in rats. The control, standard and test groups of experimental animals were administered with normal saline (p.o.), diphenoxylate hydrochloride (5 mg/kg, p.o.) and Arque-Ajeeb (0.07 ml and 0.14 ml/kg, p.o.) respectively except the control group of PGE2-induced small intestine enteropooling which received only 5% ethanol in normal saline (i.p.). Charcoal (10 ml/kg, p.o.) and serotonin (600 micrograms/kg, i.p.) were administered after 30 min, while PGE2 (100 micrograms/kg, p.o.) was administered immediately afterwards. The distance traveled by charcoal in small intestine was measured after 15 and 30 min of charcoal administration, diarrhoea was observed every 30-min for six hour after serotonin administration and the volume of intestinal fluid was measured after 30 min of PGE2 administration. RESULTS: Arque-Ajeeb (0.07 ml and 0.14 ml/kg) significantly inhibited the frequency of defaecation and decreased the propulsion of charcoal meal through the gastrointestinal tract, reduced the wetness of faecal droppings in serotonin-induced diarrhoea and also reduced the PGE2-induced small intestine enteropooling. CONCLUSION: Arque-Ajeeb may have potential to reduce the diarrhoea in rats. Thus the drug may prove to be an alternate remedy in diarrhoea.  (+info)