Putidaredoxin-cytochrome p450cam interaction. Spin state of the heme iron modulates putidaredoxin structure. (1/143)

During the monooxygenase reaction catalyzed by cytochrome P450cam (P450cam), a ternary complex of P450cam, reduced putidaredoxin, and d-camphor is formed as an obligatory reaction intermediate. When ligands such as CO, NO, and O2 bind to the heme iron of P450cam in the intermediate complex, the EPR spectrum of reduced putidaredoxin with a characteristic signal at 346 millitesla at 77 K changed into a spectrum having a new signal at 348 millitesla. The experiment with O2 was carried out by employing a mutant P450cam with Asp251 --> Asn or Gly where the rate of electron transfer from putidaredoxin to oxyferrous P450cam is considerably reduced. Such a ligand-induced EPR spectral change of putidaredoxin was also shown in situ in Pseudomonas putida. Mutations introduced into the neighborhood of the iron-sulfur cluster of putidaredoxin revealed that a Ser44 --> Gly mutation mimicked the ligand-induced spectral change of putidaredoxin. Arg109 and Arg112, which are in the putative putidaredoxin binding site of P450cam, were essential for the spectral changes of putidaredoxin in the complex. These results indicate that a change in the P450cam active site that is the consequence of an altered spin state is transmitted to putidaredoxin within the ternary complex and produces a conformational change of the 2Fe-2S active center.  (+info)

Surface-modified mutants of cytochrome P450cam: enzymatic properties and electrochemistry. (2/143)

We report the electrochemistry of genetic variants of the haem monooxygenase cytochrome P450cam. A surface cysteine-free mutant (abbreviated as SCF) was prepared in which the five surface cysteine residues Cys-58, Cys-85, Cys-136, Cys-148 and Cys-334 were changed to alanines. Four single surface cysteine mutants with an additional mutation, R72C, R112C, K344C or R364C, were also prepared. The haem spin-state equilibria, NADH turnover rates and camphor-hydroxylation properties, as well as the electrochemistry of these mutants are reported. The coupling of a redox-active label, N-ferrocenylmaleimide, to the single surface cysteine mutant SCF-K344C, and the electrochemistry of this modified mutant are also described.  (+info)

The thermodynamics and kinetics of electron transfer in the cytochrome P450cam enzyme system. (3/143)

In anaerobic environments the first electron transfer in substrate-free P450cam is known to be thermodynamically unfavourable, but in the presence of dioxygen the reduction potential for the reaction shifts positively to make electron transfer thermodynamically favourable. Nevertheless a slower rate of electron transfer is observed in the substrate-free P450cam compared to substrate-bound P450cam. The ferric haem centre in substrate-free P450cam changes from six co-ordinate to five co-ordinate when reduced whereas in substrate-bound P450cam the iron centre remains five co-ordinate in both oxidation states. The slower rate of electron transfer in the substrate-free P450cam is therefore attributed to a larger reorganisation energy as predicted by Marcus theory.  (+info)

Proton nuclear magnetic resonance study of the binary complex of cytochrome P450cam and putidaredoxin: interaction and electron transfer rate analysis. (4/143)

A 1H nuclear magnetic resonance study of the complex of cytochrome P450cam-putidaredoxin has been performed. Isocyanide is bound to cytochrome P450cam in order to increase the stability of the protein both in the reduced and the oxidized state. Diprotein complex formation was detected through variation of the heme methyl proton resonances which have been assigned in the two redox states. The electron transfer rate at equilibrium was determinated by magnetization transfer experiments. The observed rate of oxidation of reduced cytochrome P450 by the oxidized putidaredoxin is 27 (+/- 7) per s.  (+info)

A high-throughput digital imaging screen for the discovery and directed evolution of oxygenases. (5/143)

BACKGROUND: Oxygenases catalyze the hydroxylation of a wide variety of organic substrates. An ability to alter oxygenase substrate specificities and improve their activities and stabilities using recombinant DNA techniques would expand their use in processes such as chemical synthesis and bioremediation. Discovery and directed evolution of oxygenases require efficient screens that are sensitive to the activities of interest and can be applied to large numbers of crude enzyme samples. RESULTS: Horseradish peroxidase (HRP) couples the phenolic products of hydroxylation of aromatic substrates to generate colored and/or fluorescent compounds that are easily detected spectroscopically in high-throughput screening. Coexpression of the coupling enzyme with a functional mono- or dioxygenase creates a pathway for the conversion of aromatic substrates into fluorescent compounds in vivo. We used this approach for detecting the products of the toluene-dioxygenase-catalyzed hydroxylation of chlorobenzene and to screen large mutant libraries of Pseudomonas putida cytochrome P450cam by fluorescence digital imaging. Colors generated by the HRP coupling reaction are sensitive to the site of oxygenase-catalyzed hydroxylation, allowing the screen to be used to identify catalysts with new or altered regiospecificities. CONCLUSIONS: The coupled oxygenase-peroxidase reaction system is well suited for screening oxygenase libraries to identify mutants with desired features, including higher activity or stability and altered reaction specificity. This approach should also be useful for screening expressed DNA libraries and combinatorial chemical libraries for hydroxylation catalysts and for optimizing oxygenase reaction conditions.  (+info)

Mutations of glutamate-84 at the putative potassium-binding site affect camphor binding and oxidation by cytochrome p450cam. (6/143)

Cytochrome P450cam (CYP101) from Pseudomonas putida is unusual among P450 enzymes in that it exhibits co-operative binding between the substrate camphor and a potassium ion. This behaviour has been investigated by mutagenesis of Glu84, a surface residue which forms part of the cation-binding site. Substitutions that neutralize or reverse the charge of this side chain are shown to disrupt the co-operativity of potassium and camphor binding by P450cam, and also to influence the catalytic activity. In particular, replacement of Glu84 by positively charged residues such as lysine results in increased high-spin haem fractions and camphor turnover activities in the absence of potassium, along with decreased camphor dissociation constants. However, in the presence of potassium the camphor dissociation constants of these mutants are significantly increased compared with the wild-type, although the camphor turnover activities remain marginally higher. In contrast, substitution by aspartate results in tighter binding of both potassium and camphor, but has little effect on the enzymatic activity. In all cases the reaction remains essentially 100% coupled and gives 5-exo-hydroxycamphor as the only product. These results suggest that an anionic side chain at the 84 position is crucial for the co-operativity of camphor and cation binding, and that the physiological role for potassium binding by cytochrome P450cam is to promote camphor binding even at the expense of turnover rate, thus allowing the organism to utilize low environmental concentrations of this substrate for growth.  (+info)

Optical detection of cytochrome P450 by sensitizer-linked substrates. (7/143)

The ability to detect, characterize, and manipulate specific biomolecules in complex media is critical for understanding metabolic processes. Particularly important targets are oxygenases (cytochromes P450) involved in drug metabolism and many disease states, including liver and kidney dysfunction, neurological disorders, and cancer. We have found that Ru photosensitizers linked to P450 substrates specifically recognize submicromolar cytochrome P450(cam) in the presence of other heme proteins. In the P450:Ru-substrate conjugates, energy transfer to the heme dramatically accelerates the Ru-luminescence decay. The crystal structure of a P450(cam):Ru-adamantyl complex reveals access to the active center via a channel whose depth (Ru-Fe distance is 21 A) is virtually the same as that extracted from an analysis of the energy-transfer kinetics. Suitably constructed libraries of sensitizer-linked substrates could be employed to probe the steric and electronic properties of buried active sites.  (+info)

Assignment of heme methyl 1H-NMR resonances of high-spin and low-spin ferric complexes of cytochrome p450cam using one-dimensional and two-dimensional paramagnetic signals enhancement (PASE) magnetization transfer experiments. (8/143)

An 1H-NMR study of ferric cytochrome P450cam in different paramagnetic states was performed. Assignment of three heme methyl resonances of the isocyanide adduct of cytochrome P450 in the ferric low-spin state was recently performed using electron exchange in the presence of putidaredoxin [Mouro, C., Bondon, A., Jung, C., Hui Bon Hoa, G., De Certaines, J.D., Spencer, R.G.S. & Simonneaux, G. (1999) FEBS Lett. 455, 302-306]. In this study, heme methyl protons of cytochrome P450 in the native high-spin and low-spin states were assigned through one-dimensional and two-dimensional magnetization transfer spectroscopy using the paramagnetic signals enhancement (PASE) method. The order of the methyl proton chemical shifts is inverted between high-spin and low-spin states. The methyl order observed in the ferric low-spin isocyanide complexes is related to the orientation of the cysteinate ligand.  (+info)