Antimutagenic effects of black tea in the Salmonella typhimurium reverse mutation assay. (9/234)

Black tea (Camellia sinensis) is one of the most widely consumed beverages worldwide. Its chemopreventive effects are well documented in the literature. In the present set of investigations antimutagenic effects of aqueous black tea extract (ATE) and black tea polyphenols (BTP) were evaluated in the Ames test using Salmonella typhimurium tester strains TA 98 and TA 100. Addition of benzo(a)pyrene (BaP) and cyclophosphamide (CP), two well known mutagens, at the concentrations of 20 and 15 microg/plate, respectively, in an S-9 metabolically activated system resulted in significant induction of his+ revertant colonies. However, addition of 500 microl 1, 2 and 4% ATE to the BaP and CP treated plates resulted in a dose dependent inhibition in the number of his+ revertant colonies. Furthermore in another set of experiments, supplementation with BTP at the concentrations of 100, 200 and 400 microg/plate also led to a significant inhibition in BaP and CP induced colony formation. The antimutagenic activity of BTP was found to be higher than that of ATE, which may be attributable to the higher amount of polyphenolic ingredients. Hence the study revealed that black tea has a protective efficacy in suppressing BaP and CP induced mutagenicity in a microbial test system.  (+info)

Mechanisms of cancer prevention by tea constituents. (10/234)

Consumption of tea (Camellia sinensis) has been suggested to prevent cancer, heart disease and other diseases. Animal studies have shown that tea and tea constituents inhibit carcinogenesis of the skin, lung, oral cavity, esophagus, stomach, liver, prostate and other organs. In some studies, the inhibition correlated with an increase in tumor cell apoptosis and a decrease in cell proliferation. Studies with human cancer cell lines have demonstrated that epigallocatechin-3-gallate (EGCG), a major tea polyphenol, inhibits mitogen-activated protein kinases, cyclin-dependent kinases, growth factor-related cell signaling, activation of activator protein 1 (AP-1) and nuclear factor kappaB (NFkappaB), topoisomerase I and matrix metalloproteinases as well as other potential targets. Although some studies report effects of EGCG at submicromolar levels, most experiments require concentrations of >10 or 20 micromol/L to demonstrate the effect. In humans, tea polyphenols undergo glucuronidation, sulfation, methylation, and ring fission. The peak plasma concentration of EGCG is approximately 1 micromol/L. The possible relevance of each of the proposed mechanisms to human cancer prevention is discussed in light of current bioavailability data for tea polyphenols and the potential limitations of animal models of carcinogenesis. Such discussion, it is hoped, will clarify some misunderstandings of cancer prevention by tea and stimulate new research efforts.  (+info)

The epidemiology of tea consumption and colorectal cancer incidence. (11/234)

This manuscript provides a brief synopsis of 30 studies aimed at examining tea consumption as a factor in the incidence of colon and rectal cancers. The 30 papers examine populations in 12 countries and provide data on consumption of both black and green tea. These studies do not provide consistent evidence to support the theory from animal studies and basic research that tea is a potent chemopreventive agent. Details of the studies are presented, and the potential impact of measurement error, publication bias, the form of tea consumed, the appropriateness of the outcomes studied and the adjustment of confounders related to both tea consumption and risk of colorectal cancer or polyps in various countries are explored. In general, the data are not more consistent for green than for black tea. Particularly with green tea, the doses consumed do get into a perceived protective range in a significant subset of the population. A negative association is stronger in observational epidemiologic studies of rectal cancer than in colon cancer. There is no consistent adjustment for important potential confounders of any tea relationship, such as coffee and alcohol consumption and physical activity levels. Finally, the assessment of tea in most of these studies was based on a single question and therefore may have significant measurement error compared with more recent studies specifically aimed at assessing tea consumption.  (+info)

Inhibition of caffeine biosynthesis in tea (Camellia sinensis) and coffee (Coffea arabica) plants by ribavirin. (12/234)

The effects of ribavirin, an inhibitor of inosine-5'-monophosphate (IMP) dehydrogenase, on [8-(14)C]inosine metabolism in tea leaves, coffee leaves and coffee fruits were investigated. Incorporation of radioactivity from [8-(14)C]inosine into purine alkaloids, such as theobromine and caffeine, guanine residues of RNA, and CO(2) was reduced by ribavirin, while incorporation into nucleotides, including IMP and adenine residues of RNA, was increased. The results indicate that inhibition of IMP dehydrogenase by ribavirin inhibits both caffeine and guanine nucleotide biosynthesis in caffeine-forming plants. The use of IMP dehydrogenase-deficient plants as a potential source of good quality caffeine-deficient tea and coffee plants is discussed.  (+info)

The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.). (13/234)

BACKGROUND AND AIMS: Tea plants (Camellia sinensis L.) accumulate large amounts of fluoride (F) from soils containing normal F concentrations. The present experiments examined the effects of pH and Ca on F uptake by this accumulating plant species. METHODS: The effect of pH was assessed in two experiments, one using uptake solutions with different pHs, and the other using lime, as CaO, applied to the soil. The effect of Ca was examined by analysing F concentrations in plants supplied with varying amounts of Ca, as Ca(NO3)2, either in uptake solutions or through the soil. KEY RESULTS: F uptake was highest at solution pH 5.5, and significantly lower at pH 4.0. In the soil experiment, leaf F decreased linearly with the amounts of lime, which raised the soil pH progressively from 4.32 to 4.91, 5.43, 5.89 and, finally, 6.55. Liming increased the water-soluble F content of the soil. Including Ca in the uptake solution or adding Ca to soil significantly decreased leaf F concentrations. The distribution pattern of F in tea plants was not altered by Ca treatment, with most F being allocated to leaves. The activity of F- in the uptake solution was unaffected and water-soluble F in the soil was sometimes increased by added Ca. CONCLUSIONS: F uptake by tea plants, which are inherently able to accumulate large quantities of F, was affected both by pH and by Ca levels in the medium. The reduced F uptake following Ca application appeared not to be due simply to the precipitation of CaF2 in solution and soil or to the complexing of Ca and F in roots, although these factors cannot be dismissed. It was more likely due to the effect of Ca on the properties of cell wall or membrane permeability in the solution experiments, and to alteration of F speciations and their quantities in soil solutions following Ca application.  (+info)

Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. (14/234)

Epidemiological data and in vitro studies on cancer chemoprevention by tea polyphenols have gained attention recently from the scientific community, nutritionists, the pharmaceutical industry, and the public. Despite the several efforts made recently to elucidate the molecular basis for the anticancer activity of these natural products, little correlation has been found thus far between the putative protein targets of compounds found in tea extracts and levels found in plasma after tea consumption. Here, by using a combination of nuclear magnetic resonance binding assays, fluorescence polarization assay, and computational docking studies, we found that certain green tea catechins and black tea theaflavins are very potent inhibitors (K(i) in the nanomolar range) of the antiapoptotic Bcl-2-family proteins, Bcl-x(L) and Bcl-2. These data suggest a strong link between the anticancer activities of these tea polyphenols and their inhibition of a crucial antiapoptotic pathway, which is implicated in the development of many human malignancies.  (+info)

Tissue distribution and intracellular localization of catechins in tea leaves. (15/234)

We investigated the leaf tissue and cellular morphology of tea (Camellia sinensis). Osmiophilic material, presumably catechins, was present in mesophyll cells, but not in epidermal cells. Electron microscopy showed that catechins were localized to restricted regions within the central vacuoles. In addition, two kinds of small vacuoles of 0.5-3 microm were present in mesophyll cells. One vacuole had catechins within its whole lumen, while the other had an electron-lucent lumen. We found fusion profiles between a large central vacuole and these small vacuoles. We propose that after catechins are synthesized, they are incorporated into small vacuoles and transported to the large central vacuoles.  (+info)

Potent inhibitors of anthrax lethal factor from green tea. (16/234)

The anthrax lethal factor (LF) has a major role in the development of anthrax. LF is delivered by the protective antigen (PA) inside the cell, where it exerts its metalloprotease activity on the N-terminus of MAPK-kinases. PA+LF are cytotoxic to macrophages in culture and kill the Fischer 344 rat when injected intravenously. We describe here the properties of some polyphenols contained in green tea as powerful inhibitors of LF metalloproteolytic activity, and how the main catechin of green tea, (-)epigallocatechin-3-gallate, prevents the LF-induced death of macrophages and Fischer 344 rats.  (+info)