Green tea modulation of the biochemical and electric properties of rat liver cells that were affected by ethanol and aging. (25/234)

The oxidative stress induced by chronic ethanol consumption, particularly in concert with the aging process, has been implicated in changes in the structure and functions of liver cell components including membrane phospholipids. To counteract such changes, particularly those resulting from lipid peroxidation, antioxidants may be applied. Green tea contains large amounts of polyphenols, mainly catechins, which possess antioxidant properties. The aim of this study was to estimate the efficacy of green tea's influence on the physicochemical and biochemical properties of the rat liver as affected by the aging process and/or chronic ethanol intoxication. Several methods were used to evaluate this effect. Antioxidant properties were evaluated by vitamin E and antioxidant status determination. The liver trigliceride and cholesterol levels were also estimated. The extent of lipid peroxidation was determined by measuring the level of lipid peroxidation products as thiobarbituric reactive substances (TBARS). The surface charge density of the rat liver cells was measured using electrophoresis. The concentration of the marker enzymes of liver damage (alanine aminotransferase and aspartate aminotransferase) in the blood serum was also evaluated. Relative to the controls, aging was found to cause a decrease in the liver's antioxidant abilities and provoke an increase in the level of lipid peroxidation; it also increased the surface charge density of the rat liver cell membrane. Ethanol significantly aggravated these changes. This might have resulted in the liver cell membrane damage visible as a leak of alanine aminotransferase and aspartate aminotransferase into the blood. The ingestion of green tea with ethanol partially prevented these aging and/or ethanol-induced changes. Long-term drinking of green tea partially prevents the changes in the structure and function of the cell membrane caused by chronic ethanol intoxication.  (+info)

Paradoxical effects of green tea (Camellia sinensis) and antioxidant vitamins in diabetic rats: improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking. (26/234)

We tested the hypothesis that green tea prevents diabetes-related tissue dysfunctions attributable to oxidation. Diabetic rats were treated daily with tap water, vitamins C and E, or fresh Japanese green tea extract. After 12 months, body weights were decreased, whereas glycated lysine in aorta, tendon, and plasma were increased by diabetes (P < 0.001) but unaffected by treatment. Erythrocyte glutathione and plasma hydroperoxides were improved by the vitamins (P < 0.05) and green tea (P < 0.001). Retinal superoxide production, acellular capillaries, and pericyte ghosts were increased by diabetes (P < 0.001) and improved by green tea and the vitamins (P variable). Lens crystallin fluorescence at 370/440 nm was ameliorated by green tea (P < 0.05) but not the vitamins. Marginal effects on nephropathy parameters were noted. However, suppressed renal mitochondrial NADH-linked ADP-dependent and dinitrophenol-dependent respiration and complex III activity were improved by green tea (P variable). Green tea also suppressed the methylglyoxal hydroimidazolone immunostaining of a 28-kDa mitochondrial protein. Surprising, glycoxidation in tendon, aorta, and plasma was either worsened or not significantly improved by the vitamins and green tea. Glucosepane cross-links were increased by diabetes (P < 0.001), and green tea worsened total cross-linking. In conclusion, green tea and antioxidant vitamins improved several diabetes-related cellular dysfunctions but worsened matrix glycoxidation in selected tissues, suggesting that antioxidant treatment tilts the balance from oxidative to carbonyl stress in the extracellular compartment.  (+info)

Green tea extract and (-)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. (27/234)

Green tea is the most widely consumed beverage. It has attained high reputation as a health-promoting dietary component ascribed to the antioxidant activity of (-)-epigallocatechin-3-gallate (EGCG), its main polyphenolic constituent. Evidence is increasing that tea constituents can be cell damaging and pro-oxidant themselves. These effects were suggested to be due to spontaneous H2O2 generation by polyphenols in solution. In the present study, we investigated the oxidant and antioxidant properties of green tea extracts (GTE) and of EGCG by means of the rodent macrophage-like RAW 264.7 and human promyelocytic leukemic HL60 cell lines. The results obtained show that both under cell-free conditions and in the presence of cells the oxidant activities of GTE and EGCG exceeded those of spontaneously generated H2O2 (FOX assay). Increase of intracellular oxidative stress was indicated by 2',7'-dichlorofluorescin probing, and the enhanced genotoxicity was demonstrated by the alkaline comet assay and by the micronucleus assay (cytokinesis block). Time- and dose-dependent induction of cell death was monitored by trypan blue exclusion, MTT assay, and Hoechst staining. Furthermore, in our systems in vitro, EGCG neither directly scavenges H2O2 nor mediates other antioxidant activities but rather increased H2O2-induced oxidative stress and DNA damage. In conclusion, our data suggest that detailed mechanistic studies on the effects of GTE and EGCG should be performed in vivo before excessive intake and/or topical application of green tea products can be recommended to healthy and/or diseased persons.  (+info)

Ablation of either p21 or Bax prevents p53-dependent apoptosis induced by green tea polyphenol epigallocatechin-3-gallate. (28/234)

Treatment with epigallocatechin-3-gallate (EGCG), a polyphenolic compound of green tea, results in activation of p53 and induction of apoptosis in prostate cancer LnCaP cells. However, no direct evidence has delineated the role of p53 and p53-dependent pathways in EGCG-mediated apoptosis. To understand the mechanism of negative growth regulation of prostate cancer cells by EGCG we undertook a genetic approach and generated an isogenic pair of prostate carcinoma cells PC3 (p53-/-) by stably introducing a cDNA encoding wild-type p53. Treatment of the resultant cells, PC3-p53, with EGCG led to, as reported earlier in LnCaP cells, an increase in p53 protein, which exacerbated both G1 arrest and apoptosis. This response was accompanied by an increase in the levels of p21 and Bax. The cells lacking p53 continued to cycle and did not undergo apoptosis upon treatment with similar concentrations of EGCG, thus establishing the action of EGCG in a p53-dependent manner. This observation was revalidated in another prostate cancer LNCaP cells harboring wild-type p53. Inactivation of p53 using small interfering RNA (siRNA) rendered these cells resistant to EGCG-mediated apoptosis. Because p53 activation led to increase in p21 and Bax, we investigated whether these two proteins are important in this process. Ablation of p21 protein by siRNA prevented G1 arrest and apoptosis in PC3-p53 cells. The p53-dependent increase in Bax expression altered the Bax/Bcl-2 ratio and paralleled the activation of caspase 9 and 3 and cleavage of PARP. Transfection of cells with Bax siRNA abolished these effects and inhibited apoptosis but did not affect the accumulation of the cells in G1. In summary, using isogenic cell lines and siRNA, we have clearly demonstrated that EGCG activates growth arrest and apoptosis primarily via p53-dependent pathway that involves the function of both p21 and Bax such that down-regulation of either molecule confers a growth advantage to the cells.  (+info)

Effects of tea constituents on cell cycle progression of human leukemia U937 cells. (29/234)

Tea and tea constituents are known to induce apoptosis in a variety of cancerous cells, suggesting their beneficial effects as chemopreventive agents. Previous studies have shown that low molecular weight constituent catechins and high molecular weight fractions of tea have the apoptosis-inducing activity, but that their action mechanisms may be different. Since cell cycle arrest is known to be one of the underlying mechanisms of apoptosis, we examined the effects of these tea constituents on cell cycle progression of human leukemia U937 cells. The results showed that the high molecular weight fractions of green tea and black tea caused G2/M arrest associated with up-regulation of p21/Waf1, but that epigallocatechin gallate, a major component of green tea catechins, gave little effects of cell cycle progression and p21/Waf1 expression. Thus, the present results suggest the difference in the apoptosis-induction mechanism between the two types of tea constituents.  (+info)

Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L.) O. Kuntze]. (30/234)

There is no information on drought-modulated gene(s) in tea [Camellia sinensis (L.) O. Kuntze], a woody and perennial plant of commercial importance. Using differential display of mRNA, three drought-modulated expressed sequence tags (ESTs) were identified. Northern and BLAST analysis revealed that clone dr1 (drought-responsive), induced only by drought but not by ABA, showed significant scores with PR-5 (pathogenesis related) family of PR-protein gene. Another clone dr2, repressed by drought but not by ABA, had nucleotide repeats for polyasparate that are also present in chicken calsequestrin-like mRNA. Clone dr3, responded similarly to clone dr2 but did not show significant homology with the reported genes, hence appears to be novel. Identification of these ESTs is an initial step to clone the full length genes and their promoters.  (+info)

Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluid. (31/234)

The effect of tea saponins (TS) on rumen fermentation and methane emission was examined using an in vitro gas production technique named Reading Pressure Technique. Three levels of TS addition (0, 0.2, 0.4 mg/ml) were evaluated in the faunated and defaunated rumen fluid. Compared to the control, TS addition decreased the 24 h gas production in the faunated rumen fluid, but had a minor effect on gas yield in the defaunated rumen fluid. The TS significantly reduced methane production in vitro. In the faunated rumen fluid, 0.2 or 0.4 mg/ml TS decreased the 24 h methane emission by 12.7% or 14.0%, respectively. Rumen fluid pH value was affected neither by TS addition nor by defaunation. The TS addition had only minor effects on volatile fatty acids, but the yield and pattern of volatile fatty acids were greatly affected by defaunation. While the molar proportion of acetate was not affected by defaunation, the propionate was significantly increased and the butyrate significantly decreased. Ammonia-N concentration and microbial protein yield were influenced by TS inclusion and defaunation. Inclusion of 0.4 mg/ml TS increased the microbial protein mass by 18.4% and 13.8% and decreased the ammonia-N concentration by 8.3% and 19.6% in the faunated and defaunated rumen fluid, respectively. Protozoa counts were significantly reduced by TS inclusion. The current study demonstrated the beneficial effect of TS on methane production and rumen fermentation, and indicated that this may be due to the effect of the associated depression on protozoa counts.  (+info)

Hepatoprotective effect of green tea (Camellia sinensis) extract against tamoxifen-induced liver injury in rats. (32/234)

Tamoxifen citrate (TAM), is widely used for treatment of breast cancer. It showed a degree of hepatic carcinogenesis. The purpose of this study was to elucidate the antioxidant capacity of green tea (Camellia sinensis) extract (GTE) against TAM-induced liver injury. A model of liver injury in female rats was done by intraperitoneal injection of TAM in a dose of 45mg Kg(-1) day(-1), i.p. for 7 successive days. GTE in the concentration of 1.5 %, was orally administered 4 days prior and 14 days after TAM-intoxication as a sole source of drinking water. The antioxidant flavonoid; epicatechin (a component of green tea) was not detectable in liver and blood of rats in either normal control or TAM-intoxicated group, however, TAM intoxication resulted in a significant decrease of its level in liver homogenate of tamoxifenintoxicated rats. The model of TAM-intoxication elicited significant declines in the antioxidant enzymes (glutathione-S-transferase,glutathione peroxidase, superoxide dismutase and catalase) and reduced glutathione concomitant with significant elevations in TBARS (thiobarbituric acid reactive substance) and liver transaminases; sGPT (serum glutamate pyruvate transaminase) and sGOT (serum glutamate oxaloacetate transaminase) levels. The oral administration of 1.5 % GTE to TAM-intoxicated rats, produced significant increments in the antioxidant enzymes and reduced glutathione concomitant with significant decrements in TBARS and liver transaminases levels. The data obtained from this study speculated that 1.5 % GTE has the capacity to scavenge free radical and can protect against oxidative stress induced by TAM intoxication. Supplementation of GTE could be useful in alleviating tamoxifen-induced liver injury in rats.  (+info)