Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. (49/309)

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare arrhythmogenic disorder characterized by syncopal events and sudden cardiac death at a young age during physical stress or emotion, in the absence of structural heart disease. We report the first nonsense mutations in the cardiac calsequestrin gene, CASQ2, in three CPVT families. The three mutations, a nonsense R33X, a splicing 532+1 G>A, and a 1-bp deletion, 62delA, are thought to induce premature stop codons. Two patients who experienced syncopes before the age of 7 years were homozygous carriers, suggesting a complete absence of calsequestrin 2. One patient was heterozygous for the stop codon and experienced syncopes from the age of 11 years. Despite the different mutations, there is little phenotypic variation of CPVT for the CASQ2 mutations. Of the 16 heterozygous carriers of these various mutations, 14 were devoid of clinical symptoms or ECG anomalies, whereas 2 of them had ventricular arrhythmias at ECG on exercise tests. In line with this, the diagnosis of the probands was difficult because of the absence of a positive family history. In conclusion, these additional three CASQ2 CPVT families suggest that CASQ2 mutations are more common than previously thought and produce a severe form of CPVT. The full text of this article is available at http://www.circresaha.org.  (+info)

Calcium-binding proteins and calcium-release channels in human maturing oocytes, pronuclear zygotes and early preimplantation embryos. (50/309)

BACKGROUND: The study aim was to investigate the presence and localization of Ca2+-binding proteins and Ca2+-release receptor channels in human maturing oocytes, pronuclear zygotes and preimplantation embryos. METHODS: Immunocytochemical analysis, using specific antibodies against the proteins being studied, followed with confocal laser microscopy, was performed on human oocytes and embryos. RESULTS: Calreticulin and calsequestrin (the two major calcium storage proteins of somatic cells), two types of calcium release receptors, the inositol trisphosphate and ryanodine receptors (InsP(3)R-2, RyRs-1,2,3), and the molecular chaperone, calnexin, were identified in all investigated cell types. Calreticulin was predominant in the cell cortex and in the nuclear envelope, while calsequestrin was distributed throughout the entire cytoplasm. Generally, localization of the InsP(3)R-2 and RyRs was similar to that of calreticulin and calsequestrin respectively. Both types of receptor were enriched in the subplasmalemmal region of meiotic oocytes. In addition, the InsP(3)R was detected in the nuclear structures of oocytes and blastomeres. Calnexin distribution overlapped with that of calreticulin but appeared to be present in distinct subcompartments. CONCLUSIONS: Human oocytes and embryos express the calcium sequestration and release proteins in highly organized and developmentally regulated patterns. Fine-tuning of these proteins may play a crucial role in regulation of Ca2+ transience during oocyte maturation, fertilization and early embryo development.  (+info)

Electron tomography of frozen-hydrated isolated triad junctions. (51/309)

Cryoelectron microscopy and tomography have been applied for the first time to isolated, frozen-hydrated skeletal muscle triad junctions (triads) and terminal cisternae (TC) vesicles derived from sarcoplasmic reticulum. Isolated triads were selected on the basis of their appearance as two spherical TC vesicles attached to opposite sides of a flattened vesicle derived from a transverse tubule (TT). Foot structures (ryanodine receptors) were resolved within the gap between the TC vesicles and TT vesicles, and some residual ordering of the receptors into arrays was apparent. Organized dense layers, apparently containing the calcium-binding protein calsequestrin, were found in the lumen of TC vesicles underlying the foot structures. The lamellar regions did not directly contact the sarcoplasmic reticulum membrane, thereby creating an approximately 5-nm-thick zone that potentially constitutes a subcompartment for achieving locally elevated [Ca(2+) ] in the immediate vicinity of the Ca(2+)-conducting ryanodine receptors. The lumen of the TT vesicles contained globular mass densities of unknown origin, some of which form cross-bridges that may be responsible for the flattened appearance of the transverse tubules when viewed in cross-section. The spatial relationships among the TT membrane, ryanodine receptors, and calsequestrin-containing assemblage are revealed under conditions that do not use dehydration, heavy-metal staining, or chemical fixation, thus exemplifying the potential of cryoelectron microscopy and tomography to reveal structural detail of complex subcellular structures.  (+info)

A retrograde signal from calsequestrin for the regulation of store-operated Ca2+ entry in skeletal muscle. (52/309)

Calsequestrin (CSQ) is a high capacity Ca(2+)-binding protein present in the lumen of sarcoplasmic reticulum (SR) in striated muscle cells and has been shown to regulate the ryanodine receptor Ca(2+) release channel activity through interaction with other proteins present in the SR. Here we show that overexpression of wild-type CSQ or a CSQ mutant lacking the junction binding region (amino acids 86-191; Delta junc-CSQ) in mouse skeletal C2C12 myotube enhanced caffeine- and voltage-induced Ca(2+) release by increasing the Ca(2+) load in SR, whereas overexpression of a mutant CSQ lacking a Ca(2+) binding, aspartate-rich domain (amino acids 352-367; Delta asp-CSQ) showed the opposite effects. Depletion of SR Ca(2+) by thapsigargin initiated store-operated Ca(2+) entry (SOCE) in C2C12 myotubes. A large component of SOCE was inhibited by overexpression of wild-type CSQ or Delta junc-CSQ, whereas myotubes transfected with Delta asp-CSQ exhibited normal function of SOCE. These results indicate that the aspartate-rich segment of CSQ, under conditions of overexpression, can sustain structural interactions that interfere with the SOCE mechanism. Such retrograde activation mechanisms are possibly taking place at the junctional site of the SR.  (+info)

Dissociation of regional adaptations to ischemia and global myolysis in an accelerated Swine model of chronic hibernating myocardium. (53/309)

We tested the hypothesis that an acute critical limitation in coronary flow reserve could rapidly recapitulate the physiological, molecular, and morphological phenotype of hibernating myocardium. Chronically instrumented swine were subjected to a partial occlusion to produce acute stunning, followed by reperfusion through a critical stenosis. Stenosis severity was adjusted serially so that hyperemic flow was severely reduced yet always higher than the preocclusion resting level. After 24 hours, resting left anterior descending coronary artery (LAD) wall thickening had decreased from 36.3+/-4.0% to 25.5+/-3.7% (P<0.05), whereas resting flow had remained normal (67+/-6 versus 67+/-8 mL/min, respectively). Although peak hyperemic flow exceeded the prestenotic value, resting flow (45+/-10 mL/min) and LAD wall thickening (17.0+/-5.0%) progressively decreased after 2 weeks, when physiological features of hibernating myocardium had developed. Regional reductions in sarcoplasmic reticulum proteins were present in hibernating myocardium but absent in stunned myocardium evaluated after 24 hours. Histological analysis showed an increase in connective tissue along with myolysis (myofibrillar loss per myocyte >10%) and increased glycogen typical of hibernating myocardium in the LAD region (33+/-3% of myocytes from animals with hibernating myocardium versus 15+/-4% of myocytes from sham-instrumented animals, P<0.05). Surprisingly, the frequency of myolysis was similar in normally perfused remote regions from animals with hibernating myocardium (32+/-7%). We conclude that the regional physiological and molecular characteristics of hibernating myocardium develop rapidly after a critical limitation in flow reserve. In contrast, the global nature of myolysis and increased glycogen content dissociate them from the intrinsic adaptations to ischemia. These may be related to chronic elevations in preload but appear unlikely to contribute to chronic contractile dysfunction.  (+info)

Effects of prenatal glucocorticoid exposure on cardiac calreticulin and calsequestrin protein expression during early development and in adulthood. (54/309)

Overexpression of the conserved Ca(2+)-binding proteins calreticulin and calsequestrin impairs cardiac function, leading to premature death. Calreticulin is vital for embryonic development, but also impairs glucocorticoid action. Glucocorticoid overexposure during late fetal life causes intra-uterine growth retardation and programmed hypertension in adulthood. To determine whether intra-uterine growth retardation or programmed hypertension was associated with altered calreticulin or calsequestrin expression, effects of prenatal glucocorticoid overexposure (maternal dexamethasone treatment on days 15-21 of pregnancy) were examined during fetal life and postnatal development until adulthood (24 weeks). Dexamethasone (100 or 200 microg/kg of maternal body weight) was administered via osmotic pump. Calreticulin was detected as a 55 kDa band and calsequestrin as 55 and 63 kDa bands in 21 day fetal hearts. Only the 55 kDa calsequestrin band was detected postnatally. Prenatal glucocorticoid overexposure at the higher dose decreased calreticulin protein expression (26%; P <0.05) but increased calsequestrin protein expression, both 55 and 63 kDa bands, by 87% ( P <0.01) and 78% ( P <0.01); only the 55 kDa calsequestrin band was increased at the lower dose (66%; P <0.05). Offspring of dams treated at the lower dexamethasone dose were studied further. In control offspring, cardiac calreticulin protein expression declined between 2 and 3 weeks of age, and remained suppressed until adulthood. Cardiac calsequestrin protein expression increased 2-fold between fetal day 21 and postnatal day 1 and continued to increase until adulthood, at which time it was 3.4-fold higher ( P <0.001). Prenatal dexamethasone exposure minimally affected postnatal calsequestrin protein expression, but the postnatal decline in calreticulin protein expression was abrogated and calreticulin protein expression in adulthood was 2.2-fold increased ( P <0.001) compared with adult controls. In view of the known associations between cardiac calreticulin overexpression and impaired cardiac function, targeted up-regulation of calreticulin may contribute to the increased risk of adult heart disease introduced as a result of prenatal overexposure to glucocorticoids.  (+info)

Polymerization of calsequestrin. Implications for Ca2+ regulation. (55/309)

Two distinct dimerization contacts in calsequestrin crystals suggested a mechanism for Ca(2+) regulation resulting from the occurrence of coupled Ca(2+) binding and protein polymerization. Ca(2+)-induced formation of one contact was proposed to lead to dimerization followed by Ca(2+)-induced formation of the second contact to bring about polymerization (). To test this mechanism, we compared canine cardiac calsequestrin and four truncation mutants with regard to their folding properties, structures, and Ca(2+)-induced polymerization. The wild-type calsequestrin and truncation mutants exhibited similar K(+)-induced folding and end-point structures as indicated by intrinsic fluorescence and circular dichroism, respectively, whereas the polymerization tendencies of the wild-type calsequestrin differed markedly from the polymerization tendencies of the truncation mutants. Static laser light scattering and 3,3'-dithiobis sulfosuccinimidyl-propionate cross-linking indicated that wild-type protein exhibited an initial Ca(2+)-induced dimerization, followed by additional oligomerization as the Ca(2+) concentration was raised or as the K(+) concentration was lowered. None of the truncation mutants exhibited clear stepwise oligomerization that depended on increasing Ca(2+) concentration. Comparison of the three-dimensional structure of rabbit skeletal calsequestrin with a homology model of canine cardiac calsequestrin from the point of view of our coupled Ca(2+) binding and polymerization mechanism leads to a possible explanation for the 2-fold reduced Ca(2+) binding capacity of cardiac calsequestrin despite very similar overall net negative charge for the two proteins.  (+info)

Depletion of T-tubules and specific subcellular changes in sarcolemmal proteins in tachycardia-induced heart failure. (56/309)

OBJECTIVE: The T-tubule membrane network is integrally involved in excitation-contraction coupling in ventricular myocytes. Ventricular myocytes from canine hearts with tachycardia-induced dilated cardiomyopathy exhibit a decrease in accessible T-tubules to the membrane-impermeant dye, di8-ANNEPs. The present study investigated the mechanism of loss of T-tubule staining and examined for changes in the subcellular distribution of membrane proteins essential for excitation-contraction coupling. METHODS: Isolated ventricular myocytes from canine hearts with and without tachycardia-induced heart failure were studied using fluorescence confocal microscopy and membrane fractionation techniques using a variety of markers specific for sarcolemmal and sarcoplasmic reticulum proteins. RESULTS: Probes for surface glycoproteins, Na/K ATPase, Na/Ca exchanger and Ca(v)1.2 demonstrated a prominent but heterogeneous reduction in T-tubule labeling in both intact and permeabilised failing myocytes, indicating a true depletion of T-tubules and associated membrane proteins. Membrane fractionation studies showed reductions in L-type Ca(2+) channels and beta-adrenergic receptors but increased levels of Na/Ca exchanger protein in both surface sarcolemma and T-tubular sarcolemma-enriched fractions; however, the membrane fraction enriched in junctional complexes of sarcolemma and junctional sarcoplasmic reticulum demonstrated no significant changes in the density of any sarcolemmal protein or sarcoplasmic reticulum protein assayed. CONCLUSION: Failing canine ventricular myocytes exhibit prominent depletion of T-tubules and changes in the density of a variety of proteins in both surface and T-tubular sarcolemma but with preservation of the protein composition of junctional complexes. This subcellular remodeling contributes to abnormal excitation-contraction coupling in heart failure.  (+info)