Interaction of a kinesin-like protein with calmodulin isoforms from Arabidopsis. (33/1442)

In Arabidopsis and other plants there are multiple calmodulin isoforms. However, the role of these isoforms in regulating the activity of target proteins is obscure. Here, we analyzed the interaction between a kinesin-like calmodulin-binding motor protein (Reddy, A. S. N., Safadi, F., Narasimhulu, S. B., Golovkin, M., and Hu, X. (1996) J. Biol. Chem. 271, 7052-7060) and three calmodulin isoforms (calmodulin-2, -4, and -6) from Arabidopsis using different approaches. Gel mobility and fluorescence shift assays revealed that the motor binds to all calmodulin isoforms in a calcium-dependent manner. Furthermore, all calmodulin isoforms were able to activate bovine calcium/calmodulin-dependent phosphodiesterase. However, the concentration of calmodulin-2 required for half-maximal activation of phosphodiesterase is 2- and 6-fold lower compared with calmodulin-4 and -6, respectively. The dissociation constants of the motor to calmodulin-2, -4, and -6 are 12.8, 27.0, and 27.8 nM, respectively, indicating that calmodulin-2 has 2-fold higher affinity for the motor than calmodulin-4 and -6. Similar results were obtained using another assay that involves the binding of (35)S-labeled calmodulin isoforms to the motor. The binding saturation curves of the motor with calmodulin isoforms have confirmed that calmodulin-2 has 2-fold higher affinity to the motor. However, the affinity of calmodulin-4 and -6 isoforms for the motor was about the same. Based on these studies, we conclude that all calmodulin isoforms bind to the motor protein but with different affinities.  (+info)

Induction of apoptosis in the germline and follicle layer of Drosophila egg chambers. (34/1442)

The reaper and head involution defective genes can induce apoptotic death in several Drosophila cell types, including portions of the embryo and eye. By a combination of FLP recombinase and the yeast Gal4/UAS transcription activation system, we expressed both cell death genes in discrete clones in the adult ovarian follicle cell layer. The expression of either reaper or head involution defective induced follicle cell apoptosis during all oogenic stages. Unexpectedly, the disruption of the follicle layer led to the induced degeneration of the nurse cells in an apoptotic manner, demonstrating a germline-somatic interaction required for germ cell viability. The germline apoptosis initiates at a specific time in oogenesis, coinciding with the beginning of vitellogenesis. This observation is intriguing given previous suggestions of a process to eliminate defective egg chambers at these same oogenic stages. The induce germline degeneration initiates with the transient formation of a network of filamentous actin around the nurse cell nucleus, in close association with a product of the adducin-related hu-li tai shao gene. This was immediately followed by nuclear condensation and DNA fragmentation, both characteristics diagnostic of apoptosis. Occurring concomitantly with the nuclear phenotypes were the disorganization of ring canals, and the degradation of Armadillo protein (a beta-catenin homolog) and filamentous actin. Germ cells degenerating as a normal consequence of oogenesis displayed a similar set of phenotypes, suggesting that a common apoptotic mechanism may underlie these different germline death phenomena.  (+info)

Tyrosine phosphorylation of caldesmon is required for binding to the Shc.Grb2 complex. (35/1442)

S3-v-erbB is a retroviral oncogene that encodes a ligand-independent, transforming mutant of the epidermal growth factor receptor. This oncogene has been shown to be sarcomagenic in vivo and to transform fibroblasts in vitro. Our previous studies (McManus, M. J., Lingle, W. L., Salisbury, J. L., and Maihle, N. J. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 11351-11356) showed that expression of S3-v-erbB in primary fibroblasts results in the tyrosine phosphorylation of caldesmon (CaD), an actin- and calmodulin-binding protein. This phosphorylation is transformation-associated, and the phosphorylated form of CaD is associated with a signaling complex consisting of Shc, Grb2, and Sos in transformed fibroblasts. To identify the tyrosine phosphorylation site(s) in the CaD molecule and to further elucidate the functional role of CaD tyrosine phosphorylation in S3-v-ErbB oncogenic signaling, we have generated a series of mutant CaDs in which one or more tyrosine residues have been replaced with phenylalanine. Using a CaD null cell line, DF1 cells (an immortalized chicken embryo fibroblast cell line), and transient transfection assays, we demonstrated that Tyr-27 and Tyr-393 are the major sites of tyrosine phosphorylation on CaD. Interestingly, Tyr-27 is located within the myosin binding domain of CaD, and Tyr-393 is adjacent to one of the major actin binding and actomyosin ATPase inhibitory domains. Our studies also show that the tyrosine phosphorylation of CaD enhances its binding to the Shc.Grb2 complex. Specifically, replacement of Tyr-27, but not of Tyr-165 or Tyr-393, significantly reduces the ability of CaD to interact with the Shc. Grb2 complex. Together, these studies demonstrate that the major sites of tyrosine phosphorylation on CaD are located in the myosin and actin binding domains of CaD and that Tyr-27 is the major tyrosine phosphorylation site through which CaD interacts with the Shc.Grb2 complex.  (+info)

Serine/threonine phosphorylation of calmodulin modulates its interaction with the binding domains of target enzymes. (36/1442)

The interaction of serine/threonine-phosphorylated calmodulin with synthetic peptides corresponding to the calmodulin-binding domains of six enzymes has been studied by fluorescence spectroscopy. For five peptides, the dissociation constant of the calmodulin-peptide complex (K(d)) increased when calmodulin was phosphorylated. An increase of more than one order of magnitude was observed with peptides derived from smooth-muscle myosin light-chain kinase and cAMP phosphodiesterase. In contrast, only a slight increase in K(d) was noted with two peptides derived from the plasma membrane Ca(2+)-ATPase and for the peptide derived from nitric oxide synthase. No significant change in affinity was detected with the peptide derived from calcineurin. In contrast, a decrease in the dissociation constant was observed with the peptide derived from the Ca(2+)-calmodulin dependent kinase II. Phosphorylation also affected the peptide-calmodulin binding stoichiometry: a decrease from two to one binding sites was observed with the peptides derived from myosin light-chain kinase and phosphodiesterase.  (+info)

The role of human MBF1 as a transcriptional coactivator. (37/1442)

Multiprotein bridging factor 1 (MBF1) is a coactivator which mediates transcriptional activation by interconnecting the general transcription factor TATA element-binding protein and gene-specific activators such as the Drosophila nuclear receptor FTZ-F1 or the yeast basic leucine zipper protein GCN4. The human homolog of MBF1 (hMBF1) has been identified but its function, especially in transcription, remains unclear. Here we report the cDNA cloning and functional analysis of hMBF1. Two isoforms, which we term hMBF1alpha and hMBF1beta, have been identified. hMBF1alpha mRNA was detected in a number of tissues, whereas hMBF1beta exhibited tissue-specific expression. Both isoforms bound to TBP and Ad4BP/SF-1, a mammalian counterpart of FTZ-F1, and mediated Ad4BP/SF-1-dependent transcriptional activation. While hMBF1 was detected in the cytoplasm by immunostaining, coexpression of the nuclear protein Ad4BP/SF-1 with hMBF1 induced accumulation of hMBF1 in the nucleus, suggesting that hMBF1 is localized in the nucleus through its binding to Ad4BP/SF-1. hMBF1 also bound to ATF1, a member of the basic leucine zipper protein family, and mediated its activity as a transcriptional activator. These data establish that the coactivator MBF1 is functionally conserved in eukaryotes.  (+info)

The kinetic mechanism of myosin V. (38/1442)

Myosin V is an unconventional myosin proposed to be processive on actin filaments, analogous to kinesin on a microtubule [Mehta, A. D., et al. (1999) Nature (London) 400, 590-593]. To ascertain the unique properties of myosin V that permit processivity, we undertook a detailed kinetic analysis of the myosin V motor. We expressed a truncated, single-headed myosin V construct that bound a single light chain to study its innate kinetics, free from constraints imposed by other regions of the molecule. The data demonstrate that unlike any previously characterized myosin a single-headed myosin V spends most of its kinetic cycle (>70%) strongly bound to actin in the presence of ATP. This kinetic tuning is accomplished by increasing several of the rates preceding strong binding to actin and concomitantly prolonging the duration of the strongly bound state by slowing the rate of ADP release. The net result is a myosin unlike any previously characterized, in that ADP release is the rate-limiting step for the actin-activated ATPase cycle. Thus, because of a number of kinetic adaptations, myosin V is tuned for processive movement on actin and will be capable of transporting cargo at lower motor densities than any other characterized myosin.  (+info)

Increased protein kinase C delta in mammary tumor cells: relationship to transformtion and metastatic progression. (39/1442)

Relatively little is known about the molecular mechanisms of tumor promotion/progression in mammary carcinogenesis. Increased protein kinase C (PKC) activity is known to promote tumor formation in several tissues; however, its role in mammary carcinogenesis is not yet known. To determine if individual PKCs may selectively regulate properties of mammary tumor cells, we compared PKC isozyme levels in mammary tumor cell lines with low, moderate and high metastatic potential. All three cell lines expressed alpha, delta, epsilon and zeta PKCs; however, PKC delta levels were relatively increased in the highly metastatic cells. To determine if increased PKC delta could contribute to promotion/progression, we overexpressed PKC delta in the low and moderately metastatic cell lines. PKC delta overexpression had no significant effect on growth of adherent cells, but significantly increased anchorage-independent growth. Conversely, expressing the regulatory domain of PKC delta (RD delta), a putative PKC delta inhibitory fragment, inhibited anchorage-independent growth. The efficacy of RD delta as a PKC delta inhibitor was demonstrated by showing that RD delta selectively interfered with PKC delta subcellular location and significantly interfered with phosphorylation of the PKC cytoskeletal substrate, adducin. PKC-dependent phosphorylation of cytoskeletal substrate proteins, such as adducin, provides a mechanistic link between increased PKC delta activity and phenotypic changes in cytoskeletal-dependent processes such as migration and attachment, two processes that are relevant to metastatic potential. The reciprocal growth effects of expressing PKC delta and RD delta as gain and loss of function constructs, respectively, provide strong evidence that PKC delta regulates processes important for anchorage-independent growth in these mammary tumor cells.  (+info)

Smooth muscle alpha-tropomyosin crosslinks to caldesmon, to actin and to myosin subfragment 1 on the muscle thin filament. (40/1442)

To obtain proximity information between tropomyosin (Tm) and caldesmon (CaD) on the muscle thin filament, we cloned gizzard alphaTm and created two single Cys mutants S56C/C190S (56Tm) and D100C/C190S (100Tm). They were labeled with benzophenone maleimide (BPM) and UV-irradiated on thin filaments. One chain of BPM-56Tm and two chains of BPM-100Tm crosslinked to CaD. Only BPM-100Tm crosslinked to actin in the absence and presence of CaD and binding of low ratios of myosin subfragment 1 (S1) prevented the crosslinking. Tm-S1 crosslinks were produced when actin.Tm was saturated with S1. Thus, CaD on the actin.Tm filament is located <10 A away from Tm amino acids 56 and 100; in the closed state of the actin.Tm filament, Tm residue 100 is located close to the actin surface and is moved further away in the S1-induced open state; in the open state, S1 binds close to Tm.  (+info)