AMP-activated protein kinase phosphorylation of endothelial NO synthase. (1/4572)

The AMP-activated protein kinase (AMPK) in rat skeletal and cardiac muscle is activated by vigorous exercise and ischaemic stress. Under these conditions AMPK phosphorylates and inhibits acetyl-coenzyme A carboxylase causing increased oxidation of fatty acids. Here we show that AMPK co-immunoprecipitates with cardiac endothelial NO synthase (eNOS) and phosphorylates Ser-1177 in the presence of Ca2+-calmodulin (CaM) to activate eNOS both in vitro and during ischaemia in rat hearts. In the absence of Ca2+-calmodulin, AMPK also phosphorylates eNOS at Thr-495 in the CaM-binding sequence, resulting in inhibition of eNOS activity but Thr-495 phosphorylation is unchanged during ischaemia. Phosphorylation of eNOS by the AMPK in endothelial cells and myocytes provides a further regulatory link between metabolic stress and cardiovascular function.  (+info)

Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. (2/4572)

Small and intermediate conductance Ca2+-activated K+ channels play a crucial role in hyperpolarizing the membrane potential of excitable and nonexcitable cells. These channels are exquisitely sensitive to cytoplasmic Ca2+, yet their protein-coding regions do not contain consensus Ca2+-binding motifs. We investigated the involvement of an accessory protein in the Ca2+-dependent gating of hIKCa1, a human intermediate conductance channel expressed in peripheral tissues. Cal- modulin was found to interact strongly with the cytoplasmic carboxyl (C)-tail of hIKCa1 in a yeast two-hybrid system. Deletion analyses defined a requirement for the first 62 amino acids of the C-tail, and the binding of calmodulin to this region did not require Ca2+. The C-tail of hSKCa3, a human neuronal small conductance channel, also bound calmodulin, whereas that of a voltage-gated K+ channel, mKv1.3, did not. Calmodulin co-precipitated with the channel in cell lines transfected with hIKCa1, but not with mKv1. 3-transfected lines. A mutant calmodulin, defective in Ca2+ sensing but retaining binding to the channel, dramatically reduced current amplitudes when co-expressed with hIKCa1 in mammalian cells. Co-expression with varying amounts of wild-type and mutant calmodulin resulted in a dominant-negative suppression of current, consistent with four calmodulin molecules being associated with the channel. Taken together, our results suggest that Ca2+-calmodulin-induced conformational changes in all four subunits are necessary for the channel to open.  (+info)

Interaction of NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase protein, with calmodulin and PSD-95/SAP90. A possible regulatory role in molecular clustering at synaptic sites. (3/4572)

NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase family protein, is known to bind to C-terminal ends of N-methyl-D-aspartate receptor 2B (NR2B) through its PDZ (PSD-95/Dlg/ZO-1) domains. NE-dlg/SAP102 and NR2B colocalize at synaptic sites in cultured rat hippocampal neurons, and their expressions increase in parallel with the onset of synaptogenesis. We have identified that NE-dlg/SAP102 interacts with calmodulin in a Ca2+-dependent manner. The binding site for calmodulin has been determined to lie at the putative basic alpha-helix region located around the src homology 3 (SH3) domain of NE-dlg/SAP102. Using a surface plasmon resonance measurement system, we detected specific binding of recombinant NE-dlg/SAP102 to the immobilized calmodulin with a Kd value of 44 nM. However, the binding of Ca2+/calmodulin to NE-dlg/SAP102 did not modulate the interaction between PDZ domains of NE-dlg/SAP102 and the C-terminal end of rat NR2B. We have also identified that the region near the calmodulin binding site of NE-dlg/SAP102 interacts with the GUK-like domain of PSD-95/SAP90 by two-hybrid screening. Pull down assay revealed that NE-dlg/SAP102 can interact with PSD-95/SAP90 in the presence of both Ca2+ and calmodulin. These findings suggest that the Ca2+/calmodulin modulates interaction of neuronal membrane-associated guanylate kinase proteins and regulates clustering of neurotransmitter receptors at central synapses.  (+info)

Properties of filament-bound myosin light chain kinase. (4/4572)

Myosin light chain kinase binds to actin-containing filaments from cells with a greater affinity than to F-actin. However, it is not known if this binding in cells is regulated by Ca2+/calmodulin as it is with F-actin. Therefore, the binding properties of the kinase to stress fibers were examined in smooth muscle-derived A7r5 cells. Full-length myosin light chain kinase or a truncation mutant lacking residues 2-142 was expressed as chimeras containing green fluorescent protein at the C terminus. In intact cells, the full-length kinase bound to stress fibers, whereas the truncated kinase showed diffuse fluorescence in the cytoplasm. After permeabilization with saponin, the fluorescence from the truncated kinase disappeared, whereas the fluorescence of the full-length kinase was retained on stress fibers. Measurements of fluorescence intensities and fluorescence recovery after photobleaching of the full-length myosin light chain kinase in saponin-permeable cells showed that Ca2+/calmodulin did not dissociate the kinase from these filaments. However, the filament-bound kinase was sufficient for Ca2+-dependent phosphorylation of myosin regulatory light chain and contraction of stress fibers. Thus, dissociation of myosin light chain kinase from actin-containing thin filaments is not necessary for phosphorylation of myosin light chain in thick filaments. We note that the distance between the N terminus and the catalytic core of the kinase is sufficient to span the distance between thin and thick filaments.  (+info)

cAMP inhibits translation by inducing Ca2+/calmodulin-independent elongation factor 2 kinase activity in IPC-81 cells. (5/4572)

Treatment of IPC-81 cells led to inhibition of protein synthesis, which was accompanied by an increase in the average size of polysomes and a decreased rate of elongation, indicating that it involved inhibition of peptide chain elongation. This inhibition was also associated with increased phosphorylation of elongation factor eEF2 (which inhibits its activity) and enhanced Ca2+/calmodulin-independent activity of eEF2 kinase. Previous work has shown that phosphorylation of eEF2 kinase by cAMP-dependent protein kinase (cAPK) in vitro induces such activator-independent activity, and the present data show that such a mechanism can occur in intact cells to link physiological levels of cAPK activation with inhibition of protein synthesis.  (+info)

T-cell stimulation through the T-cell receptor/CD3 complex regulates CD2 lateral mobility by a calcium/calmodulin-dependent mechanism. (6/4572)

T lymphocyte activation through the T cell receptor (TCR)/CD3 complex alters the avidity of the cell surface adhesion receptor CD2 for its ligand CD58. Based on the observations that activation-associated increases in intracellular [Ca2+] ([Ca2+]i) strengthen interactions between T cells and antigen-presenting cells, and that the lateral mobility of cell surface adhesion receptors is an important regulator of cellular adhesion strength, we postulated that [Ca2+]i controls CD2 lateral mobility at the T cell surface. Human Jurkat T leukemia cells were stimulated by antibody-mediated cross-linking of the TCR/CD3 complex. CD2 was labeled with a fluorescently conjugated monoclonal antibody. Quantitative fluorescence microscopy techniques were used to measure [Ca2+]i and CD2 lateral mobility. Cross-linking of the TCR/CD3 complex caused an immediate increase in [Ca2+]i and, 10-20 min later, a decrease in the fractional mobility of CD2 from the control value of 68 +/- 1% to 45 +/- 2% (mean +/- SEM). One to two hours after cell stimulation the fractional mobility spontaneously returned to the control level. Under these and other treatment conditions, the fraction of cells with significantly elevated [Ca2+]i was highly correlated with the fraction of cells manifesting significantly reduced CD2 mobility. Pretreatment of cells with a calmodulin inhibitor or a calmodulin-dependent kinase inhibitor prevented Ca2+-mediated CD2 immobilization, and pretreatment of cells with a calcineurin phosphatase inhibitor prevented the spontaneous reversal of CD2 immobilization. These data suggest that T cell activation through the TCR/CD3 complex controls CD2 lateral mobility by a Ca2+/calmodulin-dependent mechanism, and that this mechanism may involve regulated phosphorylation and dephosphorylation of CD2 or a closely associated protein.  (+info)

Suramin and suramin analogs activate skeletal muscle ryanodine receptor via a calmodulin binding site. (7/4572)

Contraction of skeletal muscle is triggered by the rapid release of Ca2+ from the sarcoplasmic reticulum via the ryanodine receptor/calcium-release channel. The trypanocidal drug suramin is an efficient activator of the ryanodine receptor. Here, we used high-affinity [3H]ryanodine binding to sarcoplasmic reticulum from rabbit skeletal muscle to screen for more potent analogs of suramin. This approach resulted in the identification of NF307, which accelerates the association rate of [3H]ryanodine binding with an EC50 = 91 +/- 7 microM at 0.19 microM calculated free Ca2+. In single-channel recordings with the purified ryanodine receptor, NF307 increased mean open probability at 0.6 microM Ca2+ from 0.020 +/- 0.006 to 0.53 +/- 0.07 with no effect on current amplitude and unitary conductance. Like caffeine, NF307 exerts a very pronounced Ca2+-sensitizing effect (EC50 of Ca2+ shifted approximately 10-fold by saturating NF307 concentrations). Conversely, increasing concentrations of free Ca2+ sensitized the receptor for NF307 (EC50 = 14.6 +/- 3.5 microM at 0.82 microM estimated free Ca2+). The effects of NF307 and caffeine on [3H]ryanodine binding were additive, irrespective of the Ca2+ concentration. In contrast, the effects of calmodulin, which activates and inhibits the ryanodine receptor in the absence and presence of Ca2+, respectively, and of NF307 were mutually antagonistic. If the purified ryanodine receptor was prebound to a calmodulin-Sepharose matrix, 100 microM NF307 and 300 microM suramin eluted the purified ryanodine receptor to an extent that was comparable to the effect of 10 microM calmodulin. We conclude that NF307 and suramin interact directly with a calmodulin binding domain of the ryanodine receptor. Because of its potent calcium-sensitizing effect, NF307 may represent a lead compound in the search of synthetic ryanodine receptor ligands.  (+info)

Dynamic and quantitative Ca2+ measurements using improved cameleons. (8/4572)

Cameleons are genetically-encoded fluorescent indicators for Ca2+ based on green fluorescent protein variants and calmodulin (CaM). Because cameleons can be targeted genetically and imaged by one- or two-photon excitation microscopy, they offer great promise for monitoring Ca2+ in whole organisms, tissues, organelles, and submicroscopic environments in which measurements were previously impossible. However, the original cameleons suffered from significant pH interference, and their Ca2+-buffering and cross-reactivity with endogenous CaM signaling pathways was uncharacterized. We have now greatly reduced the pH-sensitivity of the cameleons by introducing mutations V68L and Q69K into the acceptor yellow green fluorescent protein. The resulting new cameleons permit Ca2+ measurements despite significant cytosolic acidification. When Ca2+ is elevated, the CaM and CaM-binding peptide fused together in a cameleon predominantly interact with each other rather than with free CaM and CaM-dependent enzymes. Therefore, if cameleons are overexpressed, the primary effect is likely to be the unavoidable increase in Ca2+ buffering rather than specific perturbation of CaM-dependent signaling.  (+info)