Form deprivation myopia in mature common marmosets (Callithrix jacchus). (57/878)

PURPOSE: Experimental manipulations of visual experience are known to affect the growth of the eye and the development of refractive state in a variety of species including human and nonhuman primates. For example, it is well established that visual form deprivation causes elongation of the eye and myopia. The effects of such manipulations have generally been examined in neonatal or juvenile animals. Whether adolescent common marmosets (a new world primate) are susceptible to form deprivation myopia was studied. METHODS: Five adolescent marmosets were used in this study. Monocular form deprivation was induced by lid closure for 12 to 20 weeks, starting between 299 and 315 days of age. The effects of deprivation were assessed with keratometry, A-scan ultrasonography, and cycloplegic refractions. Both eyes (treated and fellow control) were measured before lid-closure, at the end of the deprivation period, and several times over the following 8 to 12 weeks. RESULTS: Adolescent marmosets are susceptible to visual form deprivation myopia. The experimental eyes showed significant axial elongation and myopia relative to the fellow control eyes. These changes were smaller, however, than those observed in younger eyes deprived for comparable periods. Like juvenile animals, the adolescent marmosets did not show recovery from myopia over the period monitored. CONCLUSIONS: The period for susceptibility to form deprivation myopia in the marmoset monkey extends beyond the early developmental period when ocular growth is rapid and emmetropization normally takes place. Visual form deprivation in adolescent marmosets with adult-sized eyes results in increased ocular growth and myopia. These data suggest that visual factors may influence the growth and refractive development of the human eye after puberty and may be involved in late-onset myopia.  (+info)

Decreased proteoglycan synthesis associated with form deprivation myopia in mature primate eyes. (58/878)

PURPOSE: The rate of proteoglycan synthesis was measured in the scleras of adolescent marmosets that had undergone monocular form deprivation to characterize the scleral extracellular matrix changes associated with the development of myopia in a mature primate. METHODS: Form deprivation myopia was induced in adolescent marmosets by unilateral lid suture for an average of 108 days. After the lids were reopened, the axial lengths and refractions were measured at intervals for up to 39 weeks. At the end of the study period, sclera were isolated and immediately radiolabeled with 35SO4 in organ culture. Proteoglycan synthesis rates were determined by measurement of 35SO4 incorporation into cetylpyridinium chloride-precipitable glycosaminoglycans after digestion of the scleral samples with proteinase K. Collagen content was determined by measurement of total hydroxyproline in scleral digests. Newly synthesized proteoglycans were separated on a Sepharose CL-4B molecular sieve column and identified by their core proteins by Western blot analyses. RESULTS: Lid suture resulted in myopia due to a significant increase in vitreous chamber depth. After Sepharose CL-4B chromatography, newly synthesized scleral proteoglycans isolated from normal, form-deprived, and contralateral control eyes, resolved into one major peak that eluted in the position of decorin, a small chondroitin-dermatan sulfate proteoglycan. After digestion of the major peak with chondroitinase ABC, an approximately 45-kDa core protein was detected by Western blot analyses, confirming the presence of decorin. Form deprivation resulted in a significant reduction in the rate of proteoglycan synthesis in the posterior sclera (-43.55%, P < or = 0.001). Proteoglycan synthesis was also significantly reduced in the posterior sclera of form-deprived eyes relative to total collagen content (-36.19%, P < or = 0.01) and was negatively correlated with the rate of vitreous chamber elongation in the deprived eye (r2 = 0.779, P < or = 0.05). CONCLUSIONS: Significant extracellular matrix remodeling occurs in the posterior sclera of the adolescent primate eye during vitreous chamber elongation and myopia development. The negative correlation between vitreous chamber elongation rates and the synthesis rates of decorin in form-deprived eyes suggests that proteoglycan synthesis within the posterior sclera plays a role in the regulation of ocular size and refraction in the adolescent marmoset.  (+info)

Structure-based drug design: the discovery of novel nonpeptide orally active inhibitors of human renin. (59/878)

BACKGROUND: The aspartic proteinase renin plays an important physiological role in the regulation of blood pressure. It catalyses the first step in the conversion of angiotensinogen to the hormone angiotensin II. In the past, potent peptide inhibitors of renin have been developed, but none of these compounds has made it to the end of clinical trials. Our primary aim was to develop novel nonpeptide inhibitors. Based on the available structural information concerning renin-substrate interactions, we synthesized inhibitors in which the peptide portion was replaced by lipophilic moieties that interact with the large hydrophobic S1/S3-binding pocket in renin. RESULTS: Crystal structure analysis of renin-inhibitor complexes combined with computational methods were employed in the medicinal-chemistry optimisation process. Structure analysis revealed that the newly designed inhibitors bind as predicted to the S1/S3 pocket. In addition, however, these compounds interact with a hitherto unrecognised large, distinct, sub-pocket of the enzyme that extends from the S3-binding site towards the hydrophobic core of the enzyme. Binding to this S3(sp) sub-pocket was essential for high binding affinity. This unprecedented binding mode guided the drug-design process in which the mostly hydrophobic interactions within subsite S3(sp) were optimised. CONCLUSIONS: Our design approach led to compounds with high in vitro affinity and specificity for renin, favourable bioavailability and excellent oral efficacy in lowering blood pressure in primates. These renin inhibitors are therefore potential therapeutic agents for the treatment of hypertension and related cardiovascular diseases.  (+info)

Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of Alpha/Beta interferon production. (60/878)

Measles is a highly contagious disease currently responsible for over one million childhood deaths, particularly in the developing world. Since alpha/beta interferons (IFNs) are pivotal players both in nonspecific antiviral immunity and in specific cellular responses, their induction or suppression by measles virus (MV) could influence the outcome of a viral infection. In this study we compare the IFN induction and sensitivity of laboratory-passaged attenuated MV strains Edmonston and Moraten with those of recent wild-type viruses isolated and passaged solely on human peripheral blood mononuclear cells (PBMC) or on the B958 marmoset B-cell line. We report that two PBMC-grown wild-type measles isolates and two B958-grown strains of MV induce 10- to 80-fold-lower production of IFN by phytohemagglutinin-stimulated peripheral blood lymphocytes (PBL) compared to Edmonston and Moraten strains of measles. Preinfection of PBL with these non-IFN-inducing MV isolates prevents Edmonston-induced but not double-stranded-RNA-induced IFN production. This suggests that the wild-type viruses can actively inhibit Edmonston-induced IFN synthesis and that this is not occurring by double-stranded RNA. Furthermore, the wild-type MV is more sensitive than Edmonston MV to the effect of IFN. MV is thus able to suppress the synthesis of the earliest mediator of antiviral immunity, IFN-alpha/beta. This could have important implications in the virulence and spread of MV.  (+info)

Measles virus-induced immunosuppression in vitro is independent of complex glycosylation of viral glycoproteins and of hemifusion. (61/878)

Expression of the measles virus (MV) F/H complex on the surface of viral particles, infected cells, or cells transfected to express these proteins (presenter cells [PC]) is necessary and sufficient to induce proliferative arrest in both human and rodent lymphoid cells (responder cells [RC]). This inhibition was found to occur independent of apoptosis and soluble mediators excluded by a pore size filter of 200 nm released from either PC or RC. We now show that reactive oxygen intermediates which might be released by RC or PC also do not contribute to MV-induced immunosuppression in vitro. Using an inhibitor of Golgi-resident mannosidases (deoxymannojirimycin), we found that complex glycosylation of the F and H proteins is not required for the induction of proliferative arrest of RC. As revealed by our previous studies, proteolytic cleavage of the MV F protein precursor into its F1 and F2 subunits, but not of F/H-mediated cellular fusion, was found to be required, since fusion-inhibitory peptides such as Z-D-Phe-L-Phe-Gly (Z-fFG) did not interfere with the induction of proliferative inhibition. We now show that Z-fFG inhibits cellular fusion at the stage of hemifusion by preventing lipid mixing of the outer membrane layer. These results provide strong evidence for a receptor-mediated signal elicited by the MV F/H complex which can be uncoupled from its fusogenic activity is required for the induction of proliferative arrest of human lymphocytes.  (+info)

Thyroid hyperactivity induced by methimazole, spironolactone and phenobarbital in marmosets (Callithrix jacchus): histopathology, plasma thyroid hormone levels and hepatic T4 metabolism. (62/878)

To determine drug-induced hyperfunction of marmoset thyroids due to inhibition of synthesis or enhancement of metabolic elimination of thyroid hormones, males were orally administered 10 and 30 mg/kg/day methimazole (MMI), 30 and 100 mg/kg/day spironolactone (SPL), or 50 mg/kg/day phenobarbital (PB) for 4 weeks. MMI caused marked hypertrophy of follicular epithelial cells in accordance with a significant decrease in the plasma thyroxin (T4) level. Hypertrophied epithelial cells were filled with dilated rough endoplasmic reticulum and reabsorbed intracellular colloids, and the luminal surface was covered with abundant microvilli. The colloid included vacuoles positive to anti T4 immuno-staining. SPL and PB also caused similar histomorphological changes, although they were less severe than those due to MMI and were not clearly associated with decrease in the plasma T4 levels. Hepatic T4 UDPGT activities tended to increase due to SPL and PB treatment, however, which were not so significant as increases in microsomal cytochrome P-450 contents. Some animals treated with SPL and PB showed marked increases in thyroid weights due to inactive dilated follicles. In conclusion, hyperactivity of thyroid follicles was induced in marmosets not only due to inhibition of T4 synthesis produced by MMI but also because of enhancement of hepatic T4 elimination produced by SPL and PB. However, hypertrophic effects of SPL and PB were less severe than MMI, because plasma T4 levels were maintained at almost pretreatment or control levels after SPL or PB treatment.  (+info)

Aspects of PET imaging relevant to the assessment of striatal transplantation in Huntington's disease. (63/878)

Proper assessment of outcome in clinical trials of neural transplantation requires both biochemical and imaging indices of graft survival, and behavioural and physiological indices of graft function. For transplantation in Huntington's disease, a variety of ligands that are selective for striatal degeneration and graft-derived replacement are available, notably ligands of dopaminergic receptors on striatal neurons. However, the validity of such ligands is potentially compromised by adjunctive drug therapies (e.g. neuroleptics) given to patients in the course of normal clinical care. We review the present state of experimental and clinical understanding of the selectivity of available ligands for striatal imaging, their interaction with other drug treatments, and strategies for refining valid assessment protocols in patients.  (+info)

Differential expression of estrogen receptor-alpha and -beta and androgen receptor in the ovaries of marmosets and humans. (64/878)

Estrogens and androgens are essential for the maturation of the ovarian follicle and normal fertility in the female. We have used antibodies specific for both forms of estrogen receptor (alpha [ERalpha] and beta [ERbeta]) and androgen receptor (AR) to investigate the pattern of receptor expression in ovaries obtained from women and from a New World primate, the Common marmoset (Callthrix jacchus). On Western blots, three antibodies directed against different peptides within human ERbeta all recognized recombinant human (h) ERbeta but did not bind to recombinant hERalpha. The ERbeta protein was extracted from human ovary and prostate and marmoset ovary. In marmoset and human ovaries, ERbeta protein was detected in the nuclei of granulosa cells in all sizes of follicle (both before and after formation of the antrum), and it was also detected in thecal cells, corpora lutea, surface epithelium, and stroma. In contrast, ERalpha protein was not detected in the nuclei of granulosa cells in preantral follicles, was low/absent from stromal and thecal cells, but was expressed in granulosa cells of antral follicles and in the surface epithelium. The pattern of expression of AR protein more closely resembled that of ERbeta than ERalpha. In conclusion, three independent antibodies have demonstrated convincingly that ERbeta is expressed in a wide range of cells in the primate ovary. Granulosa cells in preantral follicles could contain ERbeta:beta dimers. In antral follicles, however, ERalpha is also expressed, and the formation of homo- or heterodimers containing ERalpha may influence the pattern of gene activation within these cells.  (+info)