Expression of the oxytocin receptor in relation to steroid receptors in the uterus of a primate model, the marmoset monkey. (1/878)

The dynamics of the receptors for oestrogen (ER), progesterone (PR) and oxytocin (OTR) in the marmoset uterus have been analysed throughout the entire cycle and early pregnancy. Uteri obtained during the early, mid/late and late proliferative phase, and the early, mid and late secretory phase and early pregnancy were examined by immunohistochemistry (OTR, ER, PR) and autoradiography (OTR). A massive upregulation of the ER in the cell nuclei of glandular epithelium and stromal cells during the mid proliferative phase was succeeded by a declining staining intensity and positively stained cell number in the secretory phase. PR immunoreactivity increased in the late proliferative phase and early secretory phase, mainly within the cell nuclei, and then declined in both intensity and cell number towards the mid to late secretory phase. Myometrium showed a similar staining pattern for the steroid receptors. OTR were expressed weakly in stroma throughout the entire cycle, increasing slightly in the secretory phase. Glandular epithelium showed positive staining only during the periovulatory period. Myometrial OTR expression was weak during the proliferative phase, increased towards the secretory phase, and was maximal in the late secretory phase. Myometrial tissue adjacent to endometrium was most strongly stained. A cyclic shift evidently occurred in the pattern of steroid receptors, perhaps reflecting the steroid environment or the luteinizing hormone increase associated with ovulation.  (+info)

Anatomical structure and surface epithelial distribution in the nasal cavity of the common cotton-eared marmoset (Callithrix jacchus). (2/878)

To validate use of the common cotton-eared marmoset (Callithrix jacchus) in inhalation toxicity studies, its nasal morphology was examined. The nasal turbinates each consisted of one maxilloturbinate and one ethmoturbinate: these were more planar in structure than the comparable structures of rodents or dogs. The nasal cavity epithelia comprised squamous epithelium (SE), nasal transitional epithelium (NTE), respiratory epithelium (RE) and olfactory epithelium (OE), listed in order of occurrence from anterior to posterior positions. NTE was distributed as a narrow band lying between SE and RE. OE was limited to the dorsal part of the cavity, which was structurally similar to that of the macaque or man. Overall, this study revealed structural the similarity of the whole nasal cavity in the marmoset to that of macaques or humans. Prediction of nasal cavity changes in man based on extrapolation from experimentally induced changes in the common marmoset therefore seems likely to be feasible, making it a useful animal model for inhalation studies.  (+info)

Role of cellular tumor necrosis factor receptor-associated factors in NF-kappaB activation and lymphocyte transformation by herpesvirus Saimiri STP. (3/878)

The STP oncoproteins of the herpesvirus saimiri (HVS) subgroup A strain 11 and subgroup C strain 488 are now found to be stably associated with tumor necrosis factor receptor-associated factor (TRAF) 1, 2, or 3. Mutational analyses identified residues of PXQXT/S in STP-A11 as critical for TRAF association. In addition, a somewhat divergent region of STP-C488 is critical for TRAF association. Mutational analysis also revealed that STP-C488 induced NF-kappaB activation that was correlated with its ability to associate with TRAFs. The HVS STP-C488 P10-->R mutant was deficient in human T-lymphocyte transformation to interleukin-2-independent growth but showed wild-type phenotype for marmoset T-lymphocyte transformation in vitro and in vivo. The STP-C488 P10-->R mutant was also defective in Rat-1 fibroblast transformation, and fibroblast cell transformation was blocked by a TRAF2 dominant-negative mutant. These data implicate TRAFs in STP-C488-mediated transformation of human lymphocytes and rodent fibroblasts. Other factors are implicated in immortalization of common marmoset T lymphocytes and may also be critical in the transformation of human lymphocytes and rodent fibroblasts.  (+info)

SR146131: a new potent, orally active, and selective nonpeptide cholecystokinin subtype 1 receptor agonist. II. In vivo pharmacological characterization. (4/878)

SR146131 is a potent and selective agonist at cholecystokinin subtype 1 (CCK1) receptors in vitro. The present study evaluates the activity of the compound in vivo. SR146131 completely inhibited gastric and gallbladder emptying in mice (ED50 of 66 and 2.7 micrograms/kg p.o., respectively). SR146131 dose dependently reduced food intake in fasted rats (from 0.1 mg/kg p.o.), in nonfasted rats in which food intake had been highly stimulated by the administration of neuropeptide Y (1-36) (from 0.3 mg/kg p.o.), in fasted gerbils (from 0.1 mg/kg p.o.), and in marmosets maintained on a restricted diet (from 3 mg/kg p.o.). SR146131 (10 mg/kg p.o.) also increased the number of Fos-positive cells in the hypothalamic paraventricular nucleus of rats. Locomotor activity of mice was reduced by orally administered SR146131 (from 0.3 mg/kg p.o.). When administered intrastriatally, SR146131 elicited contralateral turning behavior in mice. Furthermore, orally administered SR146131 (0.3-10 mg/kg), also reduced the levels of cerebellar cyclic GMP. Finally, SR146131 (0.1 microgram/kg to 1 mg/kg, p.o.) significantly and dose dependently antagonized fluphenazine-induced mouth movements in rats. The CCK1 antagonist SR27897B prevented all the effects of SR146131. Conversely, SR146131 was unable to elicit any agonist or antagonist effects in a model of CCK2 receptor stimulation in vivo. SR146131 is a very potent and selective nonpeptide CCK1 agonist in vivo. SR146131 is more potent than any other CCK1 agonists reported to date. Because pharmacodynamic studies suggest that SR146131 should have a high absolute bioavailability, it may be a promising drug for the treatment of eating and motor disorders in humans.  (+info)

The common marmoset as a target preclinical primate model for cytokine and gene therapy studies. (5/878)

Nonhuman primate models are useful to evaluate the safety and efficacy of new therapeutic modalities, including gene therapy, before the inititation of clinical trials in humans. With the aim of establishing safe and effective approaches to therapeutic gene transfer, we have been focusing on a small New World monkey, the common marmoset, as a target preclinical model. This animal is relatively inexpensive and easy to breed in limited space. First, we characterized marmoset blood and bone marrow progenitor cells (BMPCs) and showed that human cytokines were effective to maintain and stimulate in culture. We then examined their susceptibility to transduction by retroviral vectors. In a mixed culture system containing both marmoset stromal cells and retroviral producer cells, the transduction efficiency into BMPCs and peripheral blood progenitor cells (PBPCs) was 12% to 24%. A series of marmosets then underwent transplantation with autologous PBPCs transduced with a retroviral vector carrying the multidrug resistance 1 gene (MDR1) and were followed for the persistence of these cells in vivo. Proviral DNA was detectable by polymerase chain reaction (PCR) in peripheral blood granulocytes and lymphocytes in the recipients of gene transduced progenitors up to 400 days posttransplantation. To examine the function of the MDR1 gene in vivo, recipient maromsets were challenged with docetaxel, an MDR effluxed drug, yet the overall level of gene transfer attained in vivo (<1% in peripheral blood granulocytes) was not sufficient to prevent the neutropenia induced by docetaxel treatment. Using this model, we safely and easily performed a series of in vivo studies in our small animal center. Our results show that this small nonhuman primate, the common marmoset, is a useful model for the evaluation of gene transfer methods targeting hematopoietic stem cells.  (+info)

Design and evaluation of a ZP3 peptide vaccine in a homologous primate model. (6/878)

The concept of a safe, immunocontraceptive vaccine using the zona pellucida glycoprotein 3 (ZP3) as an immunogen has been marred by the appearance of ovarian dysfunction in several species. However, careful selection of epitopes on mouse ZP3 have demonstrated that it is possible to segregate contraceptive bone marrow-derived (B)-cell epitopes from the cytotoxic thymus-derived (T)-cell epitopes thought to be responsible for inducing ovarian disease. B-cell epitopes on marmoset ZP3 (mstZP3) were identified by epitope mapping studies. Using a panel of polyclonal antibodies against recombinant mstZP3, an immunodominant epitope mstZP3(301-320) was identified. A chimeric peptide was co-linearly synthesized incorporating this sequence with a promiscuous tetanus toxoid T-helper cell epitope. Using the common marmoset (Callithrix jacchus) as an animal model, we have compared the consequences of active immunization with homologous recombinant mstZP3 and mstZP3(301-320) chimeric peptide vaccine. Long-term infertility was achieved using mstZP3 but at the expense of ovarian function. In contrast, no disruption to ovarian function was observed following mstZP3(301-320) immunization. Antibodies to this peptide immunolocalized to the zona pellucida of both marmoset and human ovarian sections and inhibited human sperm-zona binding by approximately 60% in vitro. However, in-vivo studies indicated that targeting a single ZP3 epitope was insufficient to reliably and consistently achieve a contraceptive effect.  (+info)

High efficiency gene transfer to the central nervous system of rodents and primates using herpes virus vectors lacking functional ICP27 and ICP34.5. (7/878)

The safe and efficient use of herpes simplex virus (HSV)-based vectors to deliver genes of potentially therapeutic benefit to the central nervous system will require their effective disablement by the inactivation of viral genes required for lytic growth. Here we report that viruses lacking functional genes for ICP27 (which is required for growth in all cell types) and ICP34.5 (which is required for growth in nondividing cell types) can deliver a marker gene to both the rodent and primate CNS with high efficiency whilst producing relatively minimal damage and having no effect on sodium currents in dorsal root ganglion neurons. Such viruses paradoxically deliver genes at much higher efficiency than the less disabled single mutant lacking ICP34.5 alone and also, as expected, produce less damage in vivo. Moreover, unlike the single mutant lacking ICP27 the double mutant viruses cannot revert to wild-type by acquistion of complimenting gene sequences during growth of virus stocks in vitro on dividing cells expressing ICP27 since artificial expression of ICP34.5 in these cells is not required. Such ICP27-; ICP34.5- viruses thus offer a platform for the development of vectors which are sufficiently safe for ultimate use in human gene therapy.  (+info)

Normal development of refractive state and ocular component dimensions in the marmoset (Callithrix jacchus). (8/878)

Refractive state and ocular dimensions were studied longitudinally in nine normal marmosets. Animals were anaesthetised and examined (with some exceptions) at 4, 6, 7, 8, 10, 15, 24 and 39 weeks of age. Cycloplegic retinoscopy showed that hyperopia early in life rapidly diminished. Refraction corrected for the artefact of retinoscopy stabilised by 8 weeks of age, but at a slightly myopic value, rather than at emmetropia. The ocular components continued to change throughout the period studied. Corneal radius, measured by photokeratometry, increased slightly during development. Anterior segment depth and vitreous chamber depth (VCD), measured by A-scan ultrasonography, increased throughout development while lens thickness initially increased and then decreased. Data from the eyes of these normal animals were compared with that from the contralateral eyes of animals which received short periods of monocular deprivation early in life (Troilo, D., & Judge S.J. (1993). Ocular development and visual deprivation myopia in the common marmoset (Callithrix jacchus jacchus). Vision Research, 33, 1311-24); eyes which viewed through no lens or a plano lens (Graham, B. & Judge, S.J. (1999)). The effects of spectacle wear in infancy on eye growth and refractive error in the marmoset (Callithrix jacchus). Vision Research, 39, 189-206), and eyes of normal animals in another colony. There were no significant differences between the first two groups and the normal animals in our colony while age-matched animals from the other colony were slightly but significantly less myopic than our animals.  (+info)