The mechanism of inhibition of the Ca2+-ATPase by mastoparan. Mastoparan abolishes cooperative ca2+ binding. (33/3607)

The amphiphilic peptide mastoparan, isolated from wasp venom, is a potent inhibitor of the sarcoplasmic reticulum Ca2+-ATPase. At pH 7. 2, ATPase activity is inhibited with an inhibitory constant (Ki) of 1 +/- 0.13 microM. Mastoparan shifts the E2-E1 equilibrium toward E1 and may affect the regulatory ATP binding site. The peptide also decreases the affinity of the ATPase for Ca2+ and abolishes the cooperativity of Ca2+ binding. In the presence of mastoparan, the two Ca2+ ions bind independently of one another. Our results appear to support the model that describes the relationship between the two Ca2+ binding sites as "side-by-side," because this model allows the possibility of independent Ca2+ entry to the two sites. Mastoparan shifts the steady-state equilibrium between E1'Ca2 and E1'Ca2.P toward E1'Ca2.P, by possibly affecting the conformational change that follows ATP binding. The peptide also causes a reduction in the levels of phosphoenzyme formed from [32P]Pi. Some analogues of mastoparan were also tested and were found to cause inhibition of the Ca2+-ATPase in the range of 2-4 microM. The inhibitory action of mastoparan and its analogues appears dependent on their ability to form alpha-helices in membranes.  (+info)

Differential modulation of caffeine- and IP3-induced calcium release in cultured arterial tissue. (34/3607)

To investigate the Ca2+-dependent plasticity of sarcoplasmic reticulum (SR) function in vascular smooth muscle, transient responses to agents releasing intracellular Ca2+ by either ryanodine (caffeine) or D-myo-inositol 1,4,5-trisphosphate [IP3; produced in response to norepinephrine (NE), 5-hydroxytryptamine (5-HT), arginine vasopressin (AVP)] receptors in rat tail arterial rings were evaluated after 4 days of organ culture. Force transients induced by all agents were increased compared with those induced in fresh rings. Stimulation by 10% FCS during culture further potentiated the force and Ca2+ responses to caffeine (20 mM) but not to NE (10 microM), 5-HT (10 microM), or AVP (0.1 microM). The effect was persistent, and SR capacity was not altered after reversible depletion of stores with cyclopiazonic acid. The effects of serum could be mimicked by culture in depolarizing medium (30 mM K+) and blocked by the addition of verapamil (1 microM) or EGTA (1 mM) to the medium, lowering intracellular Ca2+ concentration ([Ca2+]i) during culture. These results show that modulation of SR function can occur in vitro by a mechanism dependent on long-term levels of basal [Ca2+]i and involving ryanodine- but not IP3 receptor-mediated Ca2+ release.  (+info)

Unloading induces transcriptional activation of the sarco(endo)plasmic reticulum Ca2+-ATPase 1 gene in muscle. (35/3607)

Previous work showed that protein and mRNA levels of the "fast" isoform of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1) are markedly increased in unloaded slow-twitch soleus muscles, suggesting pretranslational control of gene expression [L. M. Schulte, J. Navarro, and S. C. Kandarian. Am. J. Physiol. 264 (Cell Physiol. 33): C1308-C1315, 1993]. However, because of the difficulty of measuring transcription rates from whole muscle, transcriptional activation of the SERCA1 gene with unloading has not been confirmed. Because SERCA1 pre-mRNA levels can reflect transcriptional activity, in the present study SERCA1 introns were sequenced to allow intron-directed RT-PCR measurement of SERCA1 pre-mRNA. These data were then compared with changes in SERCA1 mRNA expression in control and unloaded soleus muscles. After 2, 4, and 10 days of unloading, SERCA1 pre-mRNA and mRNA transcript levels increased significantly by two-, three-, and sevenfold, respectively (P < 0.01). Parallel increases in SERCA1 pre-mRNA and mRNA suggest transcriptional activation of the endogenous SERCA1 gene by muscle unloading. SERCA2, the cardiac/slow-twitch skeletal muscle isoform, was not markedly increased by unloading, and RNase protection assays showed no change in alternative splicing of SERCA1 or SERCA2 primary transcripts. With use of in vivo plasmid injection, the activity of a reporter gene driven by 3.6 kb of the SERCA1 5'-flanking region increased fivefold in 7-day-unloaded soleus muscles. Comparison of the magnitude of transcriptional activation of endogenous and constructed SERCA1 genes by unloading confirms the fidelity of using intronic RT-PCR to examine muscle gene transcription rates and suggests that cis-acting elements sufficient for regulating unloading-induced transcriptional activation are contained in this promoter construct.  (+info)

Superficial buffer barrier and preferentially directed release of Ca2+ in canine airway smooth muscle. (36/3607)

We examined cytosolic concentration of Ca2+ ([Ca2+]i) in canine airway smooth muscle using fura 2 fluorimetry (global changes in [Ca2+]i), membrane currents (subsarcolemmal [Ca2+]i), and contractions (deep cytosolic [Ca2+]i). Acetylcholine (10(-4) M) elicited fluorimetric, electrophysiological, and mechanical responses. Caffeine (5 mM), ryanodine (0.1-30 microM), and 4-chloro-3-ethylphenol (0.1-0.3 mM), all of which trigger Ca2+-induced Ca2+ release, evoked Ca2+ transients and membrane currents but not contractions. The sarcoplasmic reticulum (SR) Ca2+-pump inhibitor cyclopiazonic acid (CPA; 10 microM) evoked Ca2+ transients and contractions but not membrane currents. Caffeine occluded the response to CPA, whereas CPA occluded the response to acetylcholine. Finally, KCl contractions were augmented by CPA, ryanodine, or saturation of the SR and reduced when SR filling state was decreased before exposure to KCl. We conclude that 1) the SR forms a superficial buffer barrier dividing the cytosol into functionally distinct compartments in which [Ca2+]i is regulated independently; 2) Ca2+-induced Ca2+ release is preferentially directed toward the sarcolemma; and 3) there is no evidence for multiple, pharmacologically distinct Ca2+ pools.  (+info)

Ser16 prevails over Thr17 phospholamban phosphorylation in the beta-adrenergic regulation of cardiac relaxation. (37/3607)

Phospholamban is a critical regulator of sarcoplasmic reticulum Ca2+-ATPase and myocardial contractility. To determine the extent of cross signaling between Ca2+ and cAMP pathways, we have investigated the beta-adrenergic-induced phosphorylation of Ser16 and Thr17 of phospholamban in perfused rat hearts using antibodies recognizing phospholamban phosphorylated at either position. Isoproterenol caused the dose-dependent phosphorylation of Ser16 and Thr17 with strikingly different half-maximal values (EC50 = 4.5 +/- 1.6 and 28. 2 +/- 1.4 nmol/l, respectively). The phosphorylation of Ser16 induced by isoproterenol, forskolin, or 3-isobutyl-1-methylxanthine correlated to increased cardiac relaxation (r = 0.96), whereas phosphorylation of Thr17 did not. Elevation of extracellular Ca2+ did not induce phosphorylation at Thr17; only in the presence of a submaximal dose of isoproterenol, phosphorylation at Thr17 increased eightfold without additional effects on relaxation rate. Thr17 phosphorylation was partially affected by ryanodine and was completely abolished in the presence of 1 micromol/l verapamil or nifedipine. The data indicate that 1) phosphorylation of phospholamban at Ser16 by cAMP-dependent protein kinase is the main regulator of beta-adrenergic-induced cardiac relaxation definitely preceding Thr17 phosphorylation and 2) the beta-adrenergic-mediated phosphorylation of Thr17 by Ca2+-calmodulin-dependent protein kinase required influx of Ca2+ through the L-type Ca2+ channel.  (+info)

Cellular and molecular remodeling in a heart failure model treated with the beta-blocker carteolol. (38/3607)

Broad-breasted white turkey poults fed furazolidone developed dilated cardiomyopathy (DCM) characterized by ventricular dilatation, decreased ejection fraction, beta1-receptor density, sarcoplasmic reticulum (SR) Ca2+-ATPase, myofibrillar ATPase activity, and reduced metabolism markers. We investigated the effects of carteolol, a beta-adrenergic blocking agent, by administrating two different dosages (0.01 and 10.0 mg/kg) twice a day for 4 wk to control and DCM turkey poults. At completion of the study there was 59% mortality in the nontreated DCM group, 55% mortality in the group treated with the low dose of carteolol, and 22% mortality in the group treated with the high dose of carteolol. Both treated groups showed a significant decrease in left ventricle size and significant restoration of ejection fraction and left ventricular peak systolic pressure. Carteolol treatment increased beta-adrenergic receptor density, and the high carteolol dose restored SR Ca2+-ATPase and myofibrillar ATPase activities, along with creatine kinase, lactate dehydrogenase, aspartate transaminase, and ATP synthase activities, to normal. These results show that beta-blockade with carteolol improves survival, reverses contractile abnormalities, and induces cellular remodeling in this model of heart failure.  (+info)

An alpha-cardiac myosin heavy chain gene mutation impairs contraction and relaxation function of cardiac myocytes. (39/3607)

Left Ventricular (LV) myocytes were isolated from 15-wk-old male mice bearing the Arg403 --> Gln alpha-cardiac myosin heavy chain missense mutation (alpha-MHC403/+), a model of familial hypertrophic cardiomyopathy. LV myocytes were classified morphologically: type I, rod shaped with parallel myofibrils; type II, irregularly shaped, shorter and wider than wild-type (WT) control cells, with parallel myofibrils; and type III, irregularly shaped with disoriented myofibrils. Compared with WT myocytes, alpha-MHC403/+ myocytes had fewer type I cells (WT = 74 +/- 3%, alpha-MHC403/+ = 41 +/- 4%, P < 0.01) and more type III cells (WT= 12 +/- 3%, alpha-MHC403/+ = 49 +/- 7%, P < 0.01). In situ histology also demonstrated marked myofibrillar disarray in the alpha-MHC403/+ hearts. With the use of video edge detection, myocytes were paced at 1 Hz (37 degrees C) to determine the effects of the mutation on myocyte function. End-diastolic length was reduced in mutant myocytes, but fractional shortening (% contraction) and sarcomere length were not. Velocity of contraction (-dL/dtmax) was depressed in mutant cells, but more in type II and III cells (-31%) than in type I cells (-18%). Velocity of relaxation (+dL/dt) was also depressed more in type II and III cells (-38%) than in type I cells (-16%). Using fura 2 dye with intracellular Ca2+ transients, we demonstrated that in alpha-MHC403/+ myocytes, the amplitude of the Ca2+ signal during contraction was unchanged but that the time required for decay of the signal to decrease 70% from its maximum was delayed significantly (WT = 159 +/- 8 ms; alpha-MHC403/+ = 217 +/- 14 ms, P < 0.01). Sarco(endo)plasmic reticulum Ca2+-ATPase mRNA levels in alpha-MHC403/+ and WT mice were similar. These data indicate that the altered cardiac dysfunction of alpha-MHC403/+ myocytes is directly due to defective myocyte function rather than to secondary changes in global cardiac function and/or loading conditions.  (+info)

Effects of creatine phosphate on Ca2+ regulation by the sarcoplasmic reticulum in mechanically skinned rat skeletal muscle fibres. (40/3607)

1. The effect of creatine phosphate (PCr) on sarcoplasmic reticulum (SR) Ca2+ regulation was studied in mechanically skinned skeletal muscle fibres from rat extensor digitorium longus (EDL). Preparations were perfused with solutions mimicking the intracellular milieu and the [Ca2+] within the muscle was monitored continuously using fura-2. 2. Brief application of 40 mM caffeine caused a transient increase in [Ca2+] due to SR Ca2+ release, and an associated tension response. Withdrawal of PCr resulted in (i) a slow transient release of Ca2+ from the SR (ii) a marked prolongation of the descending phase of the caffeine-induced fluorescence ratio transient and (iii) a decrease in the Ca2+ transient amplitude to 69.2 +/- 2.7 % (n = 16) of control responses. 3. Prolongation of the caffeine-induced Ca2+ transient also occurred following application of the SR Ca2+ pump inhibitor cyclopiazonic acid (CPA). This suggests that (i) the descending phase of the caffeine-induced Ca2+ transient is dependent on the rate of Ca2+ uptake by the SR and (ii) prolongation associated with PCr withdrawal may also reflect a decrease in the net Ca2+ uptake rate. 4. The effects of PCr withdrawal were mimicked by addition of the creatine kinase (CK) inhibitor 2,4-dinitro-1-fluorobenzene (DNFB). Hence, reducing the [PCr] may influence SR Ca2+ regulation by limiting local ATP regeneration by endogenous CK. After treatment with DNFB, PCr withdrawal had no effect on the Ca2+ transient, confirming that PCr does not have an additional direct effect on the SR. 5. The Ca2+ efflux associated with PCr withdrawal was insensitive to ryanodine or Ruthenium Red, but was effectively abolished by pretreatment with the SR Ca2+ pump inhibitor cyclopiazonic acid (CPA). This suggests that the Ca2+ efflux associated with PCr withdrawal is independent of the SR Ca2+ channel, but may involve reversal or inhibition of the Ca2+ ATPase. 6. These data suggest that Ca2+ regulation by the SR is strongly dependent on the supply of ATP via endogenous CK. Depletion of PCr may contribute to impaired SR Ca2+ regulation known to occur in intact skeletal muscle under conditions of fatigue.  (+info)