Preservation of calcium pyrophosphate dihydrate crystals: effect of Mayer's haematoxylin staining period. (9/116)

OBJECTIVE: To clarify the deleterious effects of Mayer's haematoxylin staining procedure which result in a decrease in, or complete loss of, the number of calcium pyrophosphate dihydrate (CPPD) crystals, and to determine the proper staining period for preserving the crystals in a histological paraffin section of articular tissues. METHODS: Paraffin sections of CPPD crystal-bearing articular tissues of six patients were stained with Mayer's haematoxylin for 3, 8, or 15 minutes, and subsequently with eosin for one minute. The specimens were examined with an Olympus BHS polarised light microscope. The pH of Mayer's haematoxylin solution was measured with a TOA pH meter. RESULTS: Positive birefringent CPPD crystals were seen clearly in all specimens stained with Mayer's haematoxylin for three minutes. The specimens stained for eight minutes showed a reduced number of crystals. No crystals were seen in the specimens stained for 15 minutes. Ordinary light microscopy showed no notable differences in the stainability of nucleus, cell membrane, and their surrounding tissues among specimens when stained with Mayer's haematoxylin for either 3, 8, or 15 minutes. The pH of Mayer's haematoxylin solution was 2.31. CONCLUSIONS: To find CPPD crystals in the paraffin sections of articular tissues, the staining period with Mayer's haematoxylin should be limited to three minutes. The longer the staining period, the greater the reduction in the number of crystals owing to the strong acidity of the haematoxylin solution. A staining period of 15 minutes causes a complete loss of CPPD crystals.  (+info)

Diff Quik staining method for detection and identification of monosodium urate and calcium pyrophosphate crystals in synovial fluids. (10/116)

OBJECTIVE: To evaluate whether the Diff Quik (DQ) staining method might prove useful in identifying monosodium urate (MSU) and calcium pyrophosphate dihydrate (CPPD) crystals on permanent mounted stained slides. METHODS: 27 synovial fluid (SF) samples obtained from the knees of 21 patients with acute CPPD disease and 6 with acute gout were studied. Wet analysis for crystal detection and identification was performed within one hour of joint aspiration. In addition, 16 inflammatory synovial effusions obtained from patients with knee arthritis induced by non-crystalline inflammatory diseases were studied. For each SF, a DQ stained slide was analysed by two of the authors trained in SF analysis. The observers were blinded to the type of crystals present in the SF. Each slide was analysed by compensated polarised as well as transmitted light microscopy. An SF was considered positive if intracellular and/or extracellular crystals were clearly identified. In addition, the observer was asked to identify the type of the crystals using compensated polarised light microscopy. Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of the DQ staining method were determined. RESULTS: 51 true positive and 28 true negative cases were correctly classified (39 CPPD samples, 12 MSU samples, 28 samples of crystal unrelated arthropathies). Overall, four false positive and three false negative cases were reported. In all the false positive cases, extracellular CPPD crystals were erroneously identified, whereas CPPD crystals present in the SF were not identified in the three false negative cases. All MSU specimens were correctly diagnosed. The overall specificity, sensitivity, and accuracy using DQ stained slides for crystal confirmation were respectively 87.5%, 94.4%, and 91.9%. The PPV was 92.7% and the NPV 90.3%. In particular, the specificity, sensitivity, and accuracy for CPPD detection were 90.9%, 92.9%, and 91.9%, with a PPV of 90.7 and an NPV of 93.0%. All the MSU specimens were correctly identified, providing 100% sensitivity, specificity, accuracy, PPV, and NPV. CONCLUSIONS: Stained preparations of SF, including DQ stained smears, could provide a useful tool for delayed SF analysis suitable for quality controls, including cytological examination and crystals detection and identification.  (+info)

Transforming growth factor beta-1 stimulates articular chondrocyte elaboration of matrix vesicles capable of greater calcium pyrophosphate precipitation. (11/116)

Objective To determine the role of transforming growth factor beta1 (TGFbeta) in early calcium pyrophosphate formation by measuring its effects on articular chondrocyte matrix vesicle (MV) formation, specific activity of the inorganic pyrophosphate(PPi)-generating enzyme nucleoside triphosphate pyrophospho-hydrolase (NTPPPH) and biomineralization capacity. Methods MV elaborated from mature porcine chondrocyte monolayers+/-TGFbeta were compared for protein content, NTPPPH activity, and ATP-dependent biomineralization. Precipitation of calcium pyrophosphate mineral phases by MV was determined by a radiometric assay and by Fourier transform infrared spectroscopy (FTIR). Results MV from monolayers exposed to TGFbeta were enriched in NTPPPH activity compared to MV from control monolayers (P< 0.01) and precipitated more calcium/mg MV protein than controls (P+info)

Quaternary structure and metal ion requirement of family II pyrophosphatases from Bacillus subtilis, Streptococcus gordonii, and Streptococcus mutans. (12/116)

Pyrophosphatase (PPase) from Bacillus subtilis has recently been found to be the first example of a family II soluble PPase with a unique requirement for Mn2+. In the present work, we cloned and overexpressed in Escherichia coli putative genes for two more family II PPases (from Streptococcus mutans and Streptococcus gordonii), isolated the recombinant proteins, and showed them to be highly specific and active PPases (catalytic constants of 1700-3300 s(-)1 at 25 degrees C in comparison with 200-400 s(-)1 for family I). All three family II PPases were found to be dimeric manganese metalloenzymes, dissociating into much less active monomers upon removal of Mn2+. The dimers were found to have one high affinity manganese-specific site (K(d) of 0.2-3 nm for Mn2+ and 10-80 microm for Mg2+) and two or three moderate affinity sites (K(d) approximately 1 mm for both cations) per subunit. Mn2+ binding to the high affinity site, which occurs with a half-time of less than 10 s at 1.5 mm Mn2+, dramatically shifts the monomer <--> dimer equilibrium in the direction of the dimer, further activates the dimer, and allows substantial activity (60-180 s(-)1) against calcium pyrophosphate, a potent inhibitor of family I PPases.  (+info)

Inflammatory microcrystals induce murine macrophage survival and DNA synthesis. (13/116)

The interaction of particulates with resident macrophages is a consistent feature in certain forms of crystal-induced inflammation, for example, in synovial tissues, lung, and the peritoneum. The mitogenic activity of basic calcium phosphate (BCP) crystals and calcium pyrophosphate dihydrate (CPPD) crystals on synovial fibroblasts has been considered relevant to the synovial hyperplasia observed in crystal-induced arthritis. The aim of the study was to determine whether microcrystals such as these could enhance macrophage survival and induce DNA synthesis, thus indicating that they may contribute to the tissue hyperplasia. Murine bone-marrow-derived macrophages were treated in vitro with microcrystals, the cell numbers were monitored over time, and DNA synthesis was measured as the incorporation of [methyl-(3)H]thymidine (TdR). We report here that BCP, monosodium urate, talc, and, to a lesser extent, CPPD crystals promote macrophage survival and DNA synthesis; the latter response is particularly striking in the presence of low concentrations of macrophage-colony stimulating factor (M-CSF, CSF-1). Enhanced macrophage survival or proliferation may contribute to the synovial hyperplasia noted in crystal-associated arthropathies, as well as to talc-induced inflammation and granuloma formation. The crystals studied join the list of particulates having these effects on macrophages, indicating the generality of this type of response.  (+info)

Evaluation of crystals in formalin-fixed, paraffin-embedded tissue sections for the differential diagnosis of pseudogout, gout, and tumoral calcinosis. (14/116)

Hematoxylin-eosin (H&E)-stained sections may not allow proper evaluation of birefringence properties of the crystals in the lesions of pseudogout, gout, and tumoral calcinosis. This study was undertaken to verify the application of a special stain that could facilitate the evaluation of the birefringence properties of these crystals for definitive diagnosis. We evaluated previously described nonaqueous alcoholic eosin staining (NAES) method based on the principle of using alcoholic eosin without hematoxylin and any other aqueous reagents for staining of formalin-fixed, paraffin-embedded tissue sections. Two observers, in a blinded fashion, evaluated the sections stained with routine H&E and NEAS method without the knowledge about clinical diagnosis. All pseudogout (nine sections from seven cases) and gout (eight sections from five cases) lesions demonstrated birefringence in the sections stained with NAES method. H&E-stained sections showing the respective diagnostic histomorphology failed to demonstrate the birefringent crystals by polarizing microscopy in all the eight sections from gout and in seven of nine sections from pseudogout. Only two H&E-stained sections showed scant calcium pyrophosphate dihydrate (CPPD) crystals in pseudogout. None of the three sections from two cases of tumoral calcinosis showed birefringence with either stain. We conclude that CPPD in pseudogout and monosodium urate in gout may not polarize in the routine H&E-stained sections. However, polarizing microscopy of sections stained with NAES method allowed demonstration of CPPD crystals with positive birefringence in pseudogout, MSU crystals with negative birefringence in gout, and calcium hydroxyapatite crystals without birefringence in tumoral calcinosis. Section stained with NAES method is a significantly useful adjunct to the routine H&E stain for proper evaluation of the crystals under polarizing microscope in these lesions.  (+info)

Dissolution of calcium pyrophosphate crystals by polyphosphates: an in vitro and ex vivo study. (15/116)

OBJECTIVE: To determine the dissolving ability (DA) of linear pentasodium tripolyphosphate (PSTP), cyclic trisodium metaphosphate (TSMP), polymeric sodium metaphosphate (SMP) on synthetic crystals of calcium pyrophosphate dihydrate (CPPD) and on crystalline aggregates of menisci from patients with chondrocalcinosis (CC). METHODS: Synthetic CPPD crystals were mixed with phosphate buffered saline (PBS), which contained the different polyphosphates, for one hour at 37 degrees C. The calcified menisci were obtained from the knees of four female patients with CPPD disease who underwent total arthroscopic meniscectomy for degenerative meniscal lesions. Meniscal cryosections and fragments were incubated in SMP (15 mg/ml PBS) at 37 degrees C for one hour and 24 hours, respectively. Histological evaluation on meniscal samples after polyphosphate incubation was carried out by ordinary transmitted light microscopy and polarised light microscopy. The dissolution of CPPD crystals by polyphosphates was assessed by atomic absorption spectroscopy, which determined the amount of calcium liberated from synthetic crystals and meniscal fragments. Cytotoxicity of SMP was evaluated by tetrazolium salt assay and by an ultrastructural study on cultured chondrocytes. RESULTS: SMP and PSTP showed higher DA on CPPD crystals than TSMP. Analysis of the DA values at increasing concentrations of SMP showed that a concentration of 15 mg/ml completely dissolved 2.0 mg CPPD crystals. The solution of meniscal CPPD crystals showed a significant increase of calcium concentration after three hours and 24 hours of SMP incubation (p=0.0001; Kruskal-Wallis analysis of variance) compared with fragments incubated in PBS control solution. Macroscopic and microscopic evaluation of meniscal specimens showed a notable reduction of CPPD deposits. A 50% inhibitory dose on cultured chondrocytes was reached at the maximum concentration of SMP used in this work (15 mg/ml); ultrastructural analysis did not show morphological alterations in the treated cells. CONCLUSION: The results of this study indicate that linear polyphosphates are effective in dissolving both synthetic and ex vivo CPPD crystal aggregates. This suggests a potential therapeutic use for these molecules in the treatment of symptomatic CC.  (+info)

Delayed examination of synovial fluid by ordinary and polarised light microscopy to detect and identify crystals. (16/116)

OBJECTIVE: To determine the reliability of a delay in the microscopic examination of synovial fluid (SF) to detect and identify crystals. METHODS: Ninety one SF samples were examined, 31 with monosodium urate (MSU) crystals, 30 with crystals of calcium pyrophosphate dihydrate (CPPD), and 30 containing no crystals. The specimens were stored with EDTA, sodium heparin, and without anticoagulant at 4 degrees C before examination at 24 and 72 hours with ordinary and polarised light microscopy. Another aliquot of the same samples was stored in a plastic container without anticoagulant at -80 degrees C and examined after two months. RESULTS: When the samples stored at 4 degrees C were re-examined after 24 hours, intracellular crystals of MSU were seen in 90/93 (97%) cases where they had been identified previously and 89/93 (96%) cases after 72 hours. Similarly, CPPD crystals were identified in 90/90 (100%) and 87/90 (97%) cases after 24 and 72 hours. Examination of the samples stored at -80 degrees C showed intracellular MSU crystals in 25/31 (81%) of cases and CPPD crystals in 25/30 (83%). No crystals were seen in any sample which had previously been diagnosed as crystal-free. CONCLUSIONS: Deferred microscopic examination of refrigerated or deep frozen SF provides a strong probability of detecting MSU or CPPD crystals if these are present initially.  (+info)