Activation of human D3 dopamine receptor inhibits P/Q-type calcium channels and secretory activity in AtT-20 cells. (1/3011)

The D3 dopamine receptor is postulated to play an important role in the regulation of neurotransmitter secretion at both pre- and postsynaptic terminals. However, this hypothesis and the underlying mechanisms remain untested because of the lack of D3-selective ligands, paucity of appropriate model secretory systems, and the weak and inconsistent coupling of D3 receptors to classical signal transduction pathways. The absence of ligands that selectively discriminate between D3 and D2 receptors in vivo precludes the study of D3 receptor function in the brain and necessitates the use of heterologous expression systems. In this report we demonstrate that activation of the human D3 dopamine receptor expressed in the AtT-20 neuroendocrine cell line causes robust inhibition of P/Q-type calcium channels via pertussis toxin-sensitive G-proteins. In addition, using the vesicle trafficking dye FM1-43, we show that D3 receptor activation significantly inhibits spontaneous secretory activity in these cells. Our results not only support the hypothesis that the D3 receptor can regulate secretory activity but also provide insight into the underlying signaling mechanisms. We propose a functional model in which the D3 receptor tightly regulates neurotransmitter release at a synapse by only allowing the propagation of spikes above a certain frequency or burst-duration threshold.  (+info)

Regulation of cardiac L-type Ca2+ channel by coexpression of G(alpha s) in Xenopus oocytes. (2/3011)

Activation of G(alpha s) via beta-adrenergic receptors enhances the activity of cardiac voltage-dependent Ca2+ channels of the L-type, mainly via protein kinase A (PKA)-dependent phosphorylation. Contribution of a PKA-independent effect of G(alpha s) has been proposed but remains controversial. We demonstrate that, in Xenopus oocytes, antisense knockdown of endogenous G(alpha s) reduced, whereas coexpression of G(alpha s) enhanced, currents via expressed cardiac L-type channels, independently of the presence of the auxiliary subunits alpha2/delta or beta2A. Coexpression of G(alpha s) did not increase the amount of alpha1C protein in whole oocytes or in the plasma membrane (measured immunochemically). Activation of coexpressed beta2 adrenergic receptors did not cause a detectable enhancement of channel activity; rather, a small cAMP-dependent decrease was observed. We conclude that coexpression of G(alpha s), but not its acute activation via beta-adrenergic receptors, enhances the activity of the cardiac L-type Ca2+ channel via a PKA-independent effect on the alpha1C subunit.  (+info)

Local control models of cardiac excitation-contraction coupling. A possible role for allosteric interactions between ryanodine receptors. (3/3011)

In cardiac muscle, release of activator calcium from the sarcoplasmic reticulum occurs by calcium- induced calcium release through ryanodine receptors (RyRs), which are clustered in a dense, regular, two-dimensional lattice array at the diad junction. We simulated numerically the stochastic dynamics of RyRs and L-type sarcolemmal calcium channels interacting via calcium nano-domains in the junctional cleft. Four putative RyR gating schemes based on single-channel measurements in lipid bilayers all failed to give stable excitation-contraction coupling, due either to insufficiently strong inactivation to terminate locally regenerative calcium-induced calcium release or insufficient cooperativity to discriminate against RyR activation by background calcium. If the ryanodine receptor was represented, instead, by a phenomenological four-state gating scheme, with channel opening resulting from simultaneous binding of two Ca2+ ions, and either calcium-dependent or activation-linked inactivation, the simulations gave a good semiquantitative accounting for the macroscopic features of excitation-contraction coupling. It was possible to restore stability to a model based on a bilayer-derived gating scheme, by introducing allosteric interactions between nearest-neighbor RyRs so as to stabilize the inactivated state and produce cooperativity among calcium binding sites on different RyRs. Such allosteric coupling between RyRs may be a function of the foot process and lattice array, explaining their conservation during evolution.  (+info)

L-type Ca2+ channels and K+ channels specifically modulate the frequency and amplitude of spontaneous Ca2+ oscillations and have distinct roles in prolactin release in GH3 cells. (4/3011)

GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.  (+info)

Beta2-adrenergic receptor overexpression in the developing mouse heart: evidence for targeted modulation of ion channels. (5/3011)

1. We studied the effect of overexpression of the beta2-adrenergic receptor (beta2-AR) in the heart on ion channel currents in single cells isolated from hearts of fetal and neonatal transgenic and wild-type mice. The beta2-AR transgene construct was under the control of the murine alpha-myosin heavy chain (alpha-MHC) promoter, and ion channel activity was measured at distinct developmental stages using whole-cell and perforated patch clamp techniques. 2. We found no change in L-type Ca2+ channel current (ICa) density in early embryonic stages (E11-13) of beta2-AR transgenic positive (TG+) mice, but significant increases in ICa density in intermediate (E14-16, 152 %) and late (E17-19, 173.7 %) fetal and neonatal (1 day post partum, 161 %) TG+ compared with transgenic negative (TG-) mice. This increase in ICa was accompanied by a negative shift in the peak of the current-voltage relationship in TG+ mice. 3. Transient (< 3 min) or prolonged (16-24 h) exposure of TG- neonatal stage myocytes to 8-Br-cAMP (300 microM) increased ICa density and caused a shift in the current-voltage relationship to a similar extent to that seen in TG+ mice. In TG+ myocytes, 8-Br-cAMP had no effect. Exposure of TG+ cells to Rp-cAMPS reversed both the shift in voltage dependence and reduced the peak current density observed in these myocytes. We concluded from these results that the L-type Ca2+ channel is maximally modulated by cAMP-dependent protein kinase (PKA) in TG+ mice and that the alpha-MHC promoter is functional in the ventricle as early as embryonic day 14. 4. In contrast, we found that slow delayed rectifier K+ channels were not changed significantly at any of the developmental stages studied by the overexpression of beta2-ARs compared with TG- mice. The sensitivity of murine slow delayed rectifier K+ channels to cAMP was tested by both transient and prolonged exposure to 8-Br-cAMP (300 microM), which increased the slow delayed rectifier K+ channel current (IK,s) density to a similar extent in both TG- and TG+ neonatal myocytes. In addition, we found that there was no difference in the concentration dependence of the response of ICa and IK,s to 8-Br-cAMP. 5. Thus, overexpression of the beta2-AR in the heart results in distinct modulation of ICa, but not IK,s, and this is not due to differences in the 8-Br-cAMP sensitivity of the two channels. Instead, these results are consistent with both compartmentalization of beta2-AR-controlled cAMP and distinct localization of L-type Ca2+ and slow delayed rectifier K+ channels. This cAMP is targeted preferentially to the L-type Ca2+ channel and is not accessible to the slow delayed rectifier K+ channel.  (+info)

Relationship between L-type Ca2+ current and unitary sarcoplasmic reticulum Ca2+ release events in rat ventricular myocytes. (6/3011)

1. The time courses of Ca2+ current and Ca2+ spark occurrence were determined in single rat ventricular myocytes voltage clamped with patch pipettes containing 0.1 microM fluo-3. Acquisition of line-scan images on a laser scanning confocal microscope was synchronized with measurement of Cd2+-sensitive Ca2+ currents. In most cells, individual Ca2+ sparks were observed by reducing Ca2+ current density with nifedipine (0.1-8 microM). 2. Ca2+ sparks elicited by depolarizing voltage-clamp pulses had a peak [Ca2+] amplitude of 289 +/- 3 nM with a decay half-time of 20.8 +/- 0.2 ms and a full width at half-maximum of 1.40 +/- 0.03 microm (mean +/- s. e.m., n = 345), independent of the membrane potential. 3. The time between the beginning of a depolarization and the initiation of each Ca2+ spark was calculated and data were pooled to construct waiting time histograms. Exponential functions were fitted to these histograms and to the decaying phase of the Ca2+ current. This analysis showed that the time constants describing Ca2+ current and Ca2+ spark occurrence at membrane potentials between -30 mV and +30 mV were not significantly different. At +50 mV, in the absence of nifedipine, the time constant describing Ca2+ spark occurrence was significantly larger than the time constant of the Ca2+ current. 4. A simple model is developed using Poisson statistics to relate macroscopic Ca2+ current to the opening of single L-type Ca2+ channels at the dyad junction and to the time course of Ca2+ spark occurrence. The model suggests that the time courses of macroscopic Ca2+ current and Ca2+ spark occurrence should be closely related when opening of a single L-type Ca2+ channel initiates a Ca2+ spark. By comparison with the data, the model suggests that Ca2+ sparks are initiated by the opening of a single L-type Ca2+ channel at all membrane potentials encountered during an action potential.  (+info)

Kinetics of inactivation and restoration from inactivation of the L-type calcium current in human myotubes. (7/3011)

1. Inactivation and recovery kinetics of L-type calcium currents were measured in myotubes derived from satellite cells of human skeletal muscle using the whole cell patch clamp technique. 2. The time course of inactivation at potentials above the activation threshold was obtained from the decay of the current during 15 s depolarizing pulses. At subthreshold potentials, prepulses of different durations, followed by +20 mV test pulses, were used. The time course could be well described by single exponential functions of time. The time constant decreased from 17.8 +/- 7.5 s at -30 mV to 1.78 +/- 0.15 s at +50 mV. 3. Restoration from inactivation caused by 15 s depolarization to +20 mV was slowed by depolarization in the restoration interval. The time constant increased from 1.11 +/- 0.17 s at -90 mV to 7.57 +/- 2.54 s at -10 mV. 4. Restoration showed different kinetics depending on the duration of the conditioning depolarization. While the time constant was similar at restoration potentials of -90 and -50 mV after a 1 s conditioning prepulse, it increased with increasing prepulse duration at -50 mV and decreased at -90 mV. 5. The experiments showed that the rates of inactivation and restoration of the L-type calcium current in human myotubes were not identical when observed at the same potential. The results indicate the presence of more than one inactivated state and point to different voltage-dependent pathways for inactivation and restoration.  (+info)

Diazepam-binding inhibitor33-50 elicits Ca2+ oscillation and CCK secretion in STC-1 cells via L-type Ca2+ channels. (8/3011)

We recently isolated and characterized 86-amino acid CCK-releasing peptide from porcine intestinal mucosa. The sequence of this peptide is identical to that of porcine diazepam-binding inhibitor (DBI). Intraduodenal administration of DBI stimulates the CCK release and elicits pancreatic secretion in rats. In this study we utilized a murine tumor cell line (STC-1 cells) that contains CCK to examine if DBI directly acts on these cells to stimulate CCK release. We investigated the cellular mechanisms responsible for this action. We showed that DBI33-50, a biologically active fragment of DBI1-86, significantly stimulated CCK secretion in STC-1 cells. This action was abolished by Ca2+-free medium. The mean basal intracellular Ca2+ concentration ([Ca2+]i) was 52 nM in fura 2-loaded STC-1 cells. DBI33-50 (1-1,000 nM) elicited Ca2+ oscillations; DBI33-50 (10 nM) increased the oscillation frequency to 5 cycles/10 min and elicited a net [Ca2+]i increase (peak - basal) to 157 nM. In contrast, bombesin and forskolin caused an initial transient [Ca2+]i followed by a small sustained [Ca2+]i plateau. Withdrawal of extracellular Ca2+ abolished Ca2+ oscillations stimulated by DBI33-50. L-type Ca2+ channel blockers nifedipine and diltiazem (3-10 microM) markedly attenuated DBI-stimulated Ca2+ oscillations. In other cell types L-type Ca2+ channels are activated by cAMP-protein kinase A. DBI33-50 failed to stimulate cAMP formation in STC-1 cells. Similarly, DBI33-50 had no effect on myo-inositol 1,4, 5-trisphosphate concentration ([IP3]), whereas bombesin caused an eightfold increase in [IP3] over basal. In addition, inhibitors of phospholipase C (U-73122), phospholipase A2 (ONO-RS-082), and protein tyrosine kinase (genistein) did not alter the Ca2+ oscillations elicited by DBI33-50. It appears that DBI33-50 acts directly on STC-1 cells to elicit Ca2+ oscillations via the voltage-dependent L-type Ca2+ channels, resulting in the secretion of CCK. Mediation of this action is by intracellular mechanisms independent of the traditional signal transduction pathways, including phospholipase C, phospholipase A2, protein tyrosine kinase, and cAMP systems.  (+info)