MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. (9/181)

Different patterns of motor nerve activity drive distinctive programs of gene transcription in skeletal muscles, thereby establishing a high degree of metabolic and physiological specialization among myofiber subtypes. Recently, we proposed that the influence of motor nerve activity on skeletal muscle fiber type is transduced to the relevant genes by calcineurin, which controls the functional activity of NFAT (nuclear family of activated T cell) proteins. Here we demonstrate that calcineurin-dependent gene regulation in skeletal myocytes is mediated also by MEF2 transcription factors, and is integrated with additional calcium-regulated signaling inputs, specifically calmodulin-dependent protein kinase activity. In skeletal muscles of transgenic mice, both NFAT and MEF2 binding sites are necessary for properly regulated function of a slow fiber-specific enhancer, and either forced expression of activated calcineurin or motor nerve stimulation up-regulates a MEF2-dependent reporter gene. These results provide new insights into the molecular mechanisms by which specialized characteristics of skeletal myofiber subtypes are established and maintained.  (+info)

Involvement of thyrotroph embryonic factor in calcium-mediated regulation of gene expression. (10/181)

In the present study, we used an expression cloning strategy to identify transcription factors that bind specifically to a limited region of the inducible cAMP early repressor (ICER) promoter and regulate transcription. Murine thyrotroph embryonic factor (mTEF) was isolated and was shown to bind to a site located at nucleotides -117 to -108 from the transcriptional start site. Transient expression of reporter constructs containing either a consensus TEFRE or the icerTEF binding site demonstrated that TEF-dependent transcription correlated with relative binding affinities, i.e. the consensus TEFRE bound TEF more tightly and was more responsive to TEF than the icerTEFRE. Because the icerTEFRE overlapped a cAMP response element, the responsiveness of these sequences to either cAMP or Ca(2+) was tested. Although TEF expression had no effect on the cAMP-regulated transcriptional response of the ICER promoter, TEF did confer calcium responsiveness to these sequences. Calcium also modestly increased the TEF-mediated transcription from a consensus TEFRE. Additional studies using Ca(2+)-activated kinases indicate that Ca(2+)/TEF/TEFRE-regulated transcription may be mediated through Ca(2+)/calmodulin-dependent kinase (CaMK) IV. Moreover, studies with the icerTEFRE in a CaMK IV-deficient cell line demonstrated that these cells were transcriptionally unresponsive to thapsigargin; however, responsiveness was restored by co-expression of the active CaMK IV. These studies are the first to demonstrate that TEF is a calcium-responsive transcription factor, and they suggest that there are two classes of TEF-regulated genes. One class, represented by a consensus TEFRE, is regulated by TEF in the resting cell; the second class, represented by icerTEFRE, is regulated by TEF in the calcium-activated cell.  (+info)

CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. (11/181)

Hypertrophic growth is an adaptive response of the heart to diverse pathological stimuli and is characterized by cardiomyocyte enlargement, sarcomere assembly, and activation of a fetal program of cardiac gene expression. A variety of Ca(2+)-dependent signal transduction pathways have been implicated in cardiac hypertrophy, but whether these pathways are independent or interdependent and whether there is specificity among them are unclear. Previously, we showed that activation of the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin or its target transcription factor NFAT3 was sufficient to evoke myocardial hypertrophy in vivo. Here, we show that activated Ca(2+)/calmodulin-dependent protein kinases-I and -IV (CaMKI and CaMKIV) also induce hypertrophic responses in cardiomyocytes in vitro and that CaMKIV overexpressing mice develop cardiac hypertrophy with increased left ventricular end-diastolic diameter and decreased fractional shortening. Crossing this transgenic line with mice expressing a constitutively activated form of NFAT3 revealed synergy between these signaling pathways. We further show that CaMKIV activates the transcription factor MEF2 through a posttranslational mechanism in the hypertrophic heart in vivo. Activated calcineurin is a less efficient activator of MEF2-dependent transcription, suggesting that the calcineurin/NFAT and CaMK/MEF2 pathways act in parallel. These findings identify MEF2 as a downstream target for CaMK signaling in the hypertrophic heart and suggest that the CaMK and calcineurin pathways preferentially target different transcription factors to induce cardiac hypertrophy.  (+info)

A possible role for Ca(2+)/calmodulin-dependent protein kinase IV during pancreatic acinar stimulus-secretion coupling. (12/181)

Ca(2+)/calmodulin-dependent protein kinases (CaMKs) are important intracellular mediators in the mediation of stimulus-secretion coupling and excitation-contraction coupling in a wide variety of cell types. We attempted to identify and characterize the functional roles of CaMK in mediating pancreatic enzyme secretion. Immunoprecipitation and immunoblotting studies using a CaMKII or CaMKIV antibody showed that rat pancreatic acini expressed both CaMKII and CaMKIV. Phosphotransferase activities of CaMKs were measured by a radioenzyme assay (REA) using autocamtide II, peptide gamma and myosin P-light chain as substrates. Although CaMKII and CaMKIV use autocamtide II as a substrate, peptide gamma is more efficiently phosphorylated by CaMKIV than by CaMKII. Intact acini were stimulated with cholecystokinin (CCK)-8, carbachol (CCh) and the high-affinity CCK-A receptor agonist, CCK-OPE, and the cell lysates were used for REA. CCK-8, CCh and CCK-OPE caused a concentration-dependent increase in CaMKs activities. When autocamtide II was used, maximal increases were 1.5-1.8-fold over basal (20.2+/-2.0 pmol/min/mg protein), with peaks occurring at 20 min after cell stimulation. In separate studies that used peptide gamma, CCK-8, CCh and CCK-OPE dose-dependently increased CaMKIV activities. Maximal increases were 1.5-2.4-fold over basal (30.7+/-3. 2 pmol/min/mg protein) with peaks occurring at 20 min after cell stimulation. Peak increases after cell stimulation induced by peptide gamma were 1.8-2.8-fold higher than those induced by autocamtide II. CCK-8, CCh and CCK-OPE also significantly increased phosphotransferase activities of myosin light chain kinase (MLCK) substrate (basal: 4.4+/-0.7 pmol/min/mg protein). However, maximal increases induced by MLCK substrate were less than 10% of those occurring in peptide gamma. Characteristics of the phosphotransferase activity were also different between autocamtide II and peptide gamma. When autocamtide II was used, elimination of medium Ca(2+) in either cell lysates or intact cells resulted in a significant decrease in the activity, whereas it had no or little effect when peptide gamma was used. This suggests that Ca(2+) influx from the extracellular space is not fully required for CaMKIV activity and Ca(2+) is not a prerequisite for phosphotransferase activity once CaMKIV is activated by either intracellular Ca(2+) release or intracellular Ca(2+) oscillations. The specific CaMKII inhibitor KN-62 (50 microM) had no effect on the CaMKIV activity and pancreatic enzyme secretion elicited by CCK-8, CCh and CCK-OPE. The specific MLCK inhibitor, ML-9 (10 microM), also did not inhibit CCK-8-stimulated pancreatic amylase secretion. In contrast, wide spectrum CaMK inhibitors, K-252a (1 microM) and KT5926 (3 microM), significantly inhibited CaMKIV activities and enzyme secretion evoked by secretagogues. Thus, CaMKIV appears to be an important intracellular mediator during stimulus-secretion coupling of rat pancreatic acinar cells.  (+info)

Activating transcription factor-2 is a positive regulator in CaM kinase IV-induced human insulin gene expression. (13/181)

Insulin plays a crucial role in the regulation of glucose-homeostasis, and its synthesis is regulated by several stimuli. The transcription of the human insulin gene, enhanced by an elevated intracellular concentration of calcium ions, was completely blocked by Ca2+/calmodulin-dependent protein kinase inhibitor. The activity of the transcription factor activating transcription factor-2 (ATF-2), which binds to the cAMP responsive elements of the human insulin gene, was enhanced by Ca2+/calmodulin-dependent protein kinase IV (CaMKIV). Mutagenesis studies showed that Thr69, Thr71, and Thr73 of ATF-2 are all required for activation by CaMKIV. CaMKIV-induced ATF-2 transcriptional activity was not altered by activation of cJun NH2-terminal protein kinase (JNK) or p38 mitogen-activated protein (MAP) kinase. Furthermore, when transfected into rat primary cultured islets, ATF-2 enhanced glucose-induced insulin promoter activity, whereas cAMP response element-binding protein (CREB) repressed it. These results suggest a mechanism in which ATF-2 regulates insulin gene expression in pancreatic beta-cells, with the transcriptional activity of ATF-2 being increased by an elevated concentration of calcium ions.  (+info)

Two distinct Ca(2+)-dependent signaling pathways regulate the motor output of cochlear outer hair cells. (14/181)

The outer hair cells (OHCs) of the cochlea have an electromotility mechanism, based on conformational changes of voltage-sensitive "motor" proteins in the lateral plasma membrane. The translocation of electrical charges across the membrane that accompanies electromotility imparts a voltage dependency to the membrane capacitance. We used capacitance measurements to investigate whether electromotility may be influenced by different manipulations known to affect intracellular Ca(2+) or Ca(2+)-dependent protein phosphorylation. Application of acetylcholine (ACh) to the synaptic pole of isolated OHCs evoked a Ca(2+)-activated apamin-sensitive outward K(+) current. It also enhanced electromotility, probably because of a phosphorylation-dependent decrease of the cell's axial stiffness. However, ACh did not change the voltage-dependent capacitance either in conventional whole-cell experiments or under perforated-patch conditions. The effects produced by the Ca(2+) ionophore ionomycin mimicked those produced by ACh. Hyperpolarizing shifts of the voltage dependence of capacitance and electromotility were induced by okadaic acid, a promoter of protein phosphorylation, whereas trifluoperazine and W-7, antagonists of calmodulin, caused opposite depolarizing shifts. Components of the protein phosphorylation cascade-IP(3) receptors and calmodulin-dependent protein kinase type IV-were immunolocalized to the lateral wall of the OHC. Our results suggest that two different Ca(2+)-dependent pathways may control the OHC motor output. The first pathway modulates cytoskeletal stiffness and can be activated by ACh. The second pathway shifts the voltage sensitivity of the OHC electromotile mechanism and may be activated by the release of Ca(2+) from intracellular stores located in the proximity of the lateral plasma membrane.  (+info)

Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. (15/181)

The Ca(2+)/calmodulin-dependent protein kinase type IV/Gr (CaMKIV/Gr) is a key effector of neuronal Ca(2+) signaling; its function was analyzed by targeted gene disruption in mice. CaMKIV/Gr-deficient mice exhibited impaired neuronal cAMP-responsive element binding protein (CREB) phosphorylation and Ca(2+)/CREB-dependent gene expression. They were also deficient in two forms of synaptic plasticity: long-term potentiation (LTP) in hippocampal CA1 neurons and a late phase of long-term depression in cerebellar Purkinje neurons. However, despite impaired LTP and CREB activation, CaMKIV/Gr-deficient mice exhibited no obvious deficits in spatial learning and memory. These results support an important role for CaMKIV/Gr in Ca(2+)-regulated neuronal gene transcription and synaptic plasticity and suggest that the contribution of other signaling pathways may spare spatial memory of CaMKIV/Gr-deficient mice.  (+info)

Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. (16/181)

Skeletal muscle differentiation is controlled by associations between myogenic basic-helix-loop-helix and MEF2 transcription factors. We show that chromatin associated with muscle genes regulated by these transcription factors becomes acetylated during myogenesis and that class II histone deacetylases (HDACs), which interact with MEF2, specifically suppress myoblast differentiation. These HDACs do not interact directly with MyoD, yet they suppress its myogenic activity through association with MEF2. Elevating the level of MyoD can override the repression imposed by HDACs on muscle genes. HDAC-mediated repression of myogenesis also can be overcome by CaM kinase and insulin-like growth factor (IGF) signaling. These findings reveal central roles for HDACs in chromatin remodeling during myogenesis and as intranuclear targets for signaling pathways controlled by IGF and CaM kinase.  (+info)