Spermatogenesis and the regulation of Ca(2+)-calmodulin-dependent protein kinase IV localization are not dependent on calspermin. (25/181)

Calspermin and Ca(2+)-calmodulin-dependent protein kinase IV (CaMKIV) are two proteins encoded by the Camk4 gene. CaMKIV is found in multiple tissues, including brain, thymus, and testis, while calspermin is restricted to the testis. In the mouse testis, both proteins are expressed within elongating spermatids. We have recently shown that deletion of CaMKIV has no effect on calspermin expression but does impair spermiogenesis by disrupting the exchange of sperm basic nuclear proteins. The function of calspermin within the testis is unclear, although it has been speculated to play a role in binding and sequestering calmodulin during the development of the germ cell. To investigate the contribution of calspermin to spermatogenesis, we have used Cre/lox technology to specifically delete calspermin, while leaving kinase expression intact. We unexpectedly found that calspermin is not required for male fertility. We further demonstrate that CaMKIV expression and localization are unaffected by the absence of calspermin and that calspermin does not colocalize to the nuclear matrix with CaMKIV.  (+info)

Silencing mediator of retinoid and thyroid hormone receptors and activating signal cointegrator-2 as transcriptional coregulators of the orphan nuclear receptor Nur77. (26/181)

For the orphan nuclear receptor subfamily that includes Nur77 (NGFI-B), Nurr1, and NOR-1, no transcriptional coregulators have been identified thus far. In this report, we found that Ca(2+)/calmodulin-dependent protein kinase IV enhances Nur77 transactivation in cotransfections either alone or in synergy with AF2dependent coactivator ASC-2, whereas corepressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) is repressive. Interestingly, Nur77 interacted with SMRT but did not directly bind ASC-2, and accordingly, the putative AF2 core domain of Nur77 did not affect the Nur77 transactivation. SMRT harbors transferable repression domains that associate with various histone deacetylases. Surprisingly, histone deacetylase inhibitor trichostatin A was unable to block the repressive effect of SMRT while dramatically stimulating the Nur77 transactivation. These results suggest that SMRT and ASC-2 are specific coregulators of Nur77 and that SMRT may dynamically compete with a putative adaptor molecule, which links ASC-2 to Nur77, for the identical binding sites within Nur77 in vivo.  (+info)

An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory. (27/181)

Calcium/calmodulin-dependent protein kinase IV (CaMKIV) has been implicated in the regulation of CRE-dependent transcription. To investigate the role of this kinase in neuronal plasticity and memory, we generated transgenic mice in which the expression of a dominant-negative form of CaMKIV (dnCaMKIV) is restricted to the postnatal forebrain. In these transgenic mice, activity-induced CREB phosphorylation and c-Fos expression were significantly attenuated. Hippocampal late LTP (L-LTP) was also impaired, whereas basic synaptic function and early LTP (E-LTP) were unaffected. These deficits correlated with impairments in long-term memory, specifically in its consolidation/retention phase but not in the acquisition phase. These results indicate that neural activity-dependent CaMKIV signaling in the neuronal nucleus plays an important role in the consolidation/retention of hippocampus-dependent long-term memory.  (+info)

Requirement for Ca2+/calmodulin-dependent kinase type IV/Gr in setting the thymocyte selection threshold. (28/181)

The outcome of thymocyte selection is influenced by the nature of Ca2+ signals transduced by the TCR. Robust Ca2+ responses characterize high-affinity, negatively selecting peptide/TCR interactions, while modest responses typify lower-affinity, positively selecting interactions. To elucidate mechanisms by which thymocytes decode distinct Ca2+ signals, we examined selection events in mice lacking Ca2+/calmodulin-dependent protein kinase type IV/Gr (CaMKIV/Gr), which is enriched in thymocytes. CaMKIV/Gr-deficient thymocytes exhibited impaired positive selection and defective Ca2+-dependent gene transcription. Significantly, CaMKIV/Gr deficiency raised the selection threshold of peptide/TCR interactions such that a peptide that normally induced weak negative selection instead promoted positive selection. These results demonstrate an important role for CaMKIV/Gr in sensitizing thymocytes to selection by low-affinity peptides.  (+info)

Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. (29/181)

Although accumulating evidence indicates that cAMP response element-binding protein (CREB) phosphorylation mediates not only synaptic plasticity but also survival of certain neurons, it remains uncertain whether CREB phosphorylation induced after metabolic insult leads to CRE-mediated gene transcription and is involved in cell survival or not. In the present study, we clarified that (1) CREB phosphorylation and ischemic tolerance induced after preconditioning ischemia in the hippocampal neurons was abolished by MK801 administration in gerbil global ischemia model, (2) CREB phosphorylation induced after exposure to glutamate in cultured neurons was inhibited by removal of extracellular calcium, by MK801 and by an inhibitor of calcium-calmodulin-dependent protein kinase (CaMK) II and IV, (3) inhibitor of CaMK II-IV or CRE-decoy oligonucleotide suppressed upregulation of BCL-2 expression and accelerated neuronal damage after exposure to glutamate, and (4) CREB phosphorylation induced in the hippocampal neurons after ischemia and in cultured neurons after exposure to glutamate was followed by CRE-mediated gene transcription in transgenic mice with a CRE-LacZ reporter. Our results suggest that CREB phosphorylation in neurons after ischemia and exposure to glutamate is induced by NMDA receptor-gated calcium influx and subsequent activation of CaMK II-IV and that CREB phosphorylation after metabolic stress might show a neuroprotective response through CRE-mediated gene induction.  (+info)

Identification and characterization of CaMKP-N, nuclear calmodulin-dependent protein kinase phosphatase. (30/181)

Calmodulin-dependent protein kinase phosphatase (CaMKP) dephosphorylates and concomitantly deactivates multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs), such as CaMKI, CaMKII, and CaMKIV. In the present study, a nuclear CaMKP-related protein, CaMKP-N, was identified. This protein consisted of 757 amino acid residues with a calculated molecular weight of 84,176. Recombinant CaMKP-N dephosphorylated CaMKIV. The activity of CaMKP-N requires Mn(2+) ions and is stimulated by polycations. Transiently expressed CaMKP-N in COS-7 cells was localized in the nucleus. This finding together with previous reports regarding localization of CaMKs indicates that CaMKP-N dephosphorylates CaMKIV and nuclear CaMKII, whereas CaMKP dephosphorylates CaMKI and cytosolic CaMKII.  (+info)

Defective signaling in a subpopulation of CD4(+) T cells in the absence of Ca(2+)/calmodulin-dependent protein kinase IV. (31/181)

Ca(2+)/calmodulin-dependent protein kinase IV-deficient (CaMKIV(-/-)) mice have been used to investigate the role of this enzyme in CD4(+) T cells. We identify a functional defect in a subpopulation of CD4(+) T cells, characterized by a cell surface marker profile usually found on memory phenotype CD4(+) T cells. Upon T-cell receptor engagement, the mutant cells produce diminished levels of interleukin-2 (IL-2), IL-4, and gamma interferon protein and mRNA. The defect is secondary to an inability to phosphorylate CREB and to induce CREB-dependent immediate-early genes, including c-jun, fosB, fra2, and junB, which are required for cytokine gene induction. In contrast, stimulated naive CD4(+) T cells from CaMKIV(-/-) mice show normal CREB phosphorylation, induction of immediate-early genes, and cytokine production. Thus, in addition to defining an important signaling role for CaMKIV in a subpopulation of T cells, we identify differential signaling requirements for cytokine production between naive T cells and T cells that express cell surface markers characteristic of the memory phenotype.  (+info)

CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. (32/181)

We characterized a new signaling pathway leading to the activation of cAMP-responsive element-binding protein (CREB) in several cell lines affected by mitochondrial dysfunction. In vitro kinase assays, inhibitors of several kinase pathways and overexpression of a dominant-negative mutant for calcium/calmodulin kinase IV (CaMKIV), which blocks the activation of CREB, showed that CaMKIV is activated by a mitochondrial activity impairment. A high calcium concentration leading to the disruption of the protein interaction with protein phosphatase 2A explains CaMKIV activation in these conditions. Transcrip tionally active phosphorylated CREB was also found in a rho0 143B human osteosarcoma cell line and in a MERRF cybrid cell line mutated for tRNA(Lys) (A8344G). We also showed that phosphorylated CREB is involved in the proliferation defect induced by a mitochondrial dysfunction. Indeed, cell proliferation inhibition can be prevented by CaMKIV inhibition and CREB dominant-negative mutants. Finally, our data suggest that phosphorylated CREB recruits p53 tumor suppressor protein, modifies its transcriptional activity and increases the expression of p21(Waf1/Cip1), a p53-regulated cyclin-dependent kinase inhibitor.  (+info)