Anterior organization of the Caenorhabditis elegans embryo by the labial-like Hox gene ceh-13. (17/9183)

The Caenorhabditis elegans lin-39, mab-5 and egl-5 Hox genes specify cell fates along the anterior-posterior body axis of the nematode during postembryonic development, but little is known about Hox gene functions during embryogenesis. Here, we show that the C. elegans labial-like gene ceh-13 is expressed in cells of many different tissues and lineages and that the rostral boundary of its expression domain is anterior to those of the other Hox genes. By transposon-mediated mutagenesis, we isolated a zygotic recessive ceh-13 loss-of-function allele, sw1, that exhibits an embryonic sublethal phenotype. Lineage analyses and immunostainings revealed defects in the organization of the anterior lateral epidermis and anterior body wall muscle cells. The epidermal and mesodermal identity of these cells, however, is correctly specified. ceh-13(sw1) mutant embryos also show fusion and adhesion defects in ectodermal cells. This suggests that ceh-13 plays a role in the anterior organization of the C. elegans embryo and is involved in the regulation of cell affinities.  (+info)

The Caenorhabditis elegans lim-6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons. (18/9183)

We describe here the functional analysis of the C. elegans LIM homeobox gene lim-6, the ortholog of the mammalian Lmx-1a and b genes that regulate limb, CNS, kidney and eye development. lim-6 is expressed in a small number of sensory-, inter- and motorneurons, in epithelial cells of the uterus and in the excretory system. Loss of lim-6 function affects late events in the differentiation of two classes of GABAergic motorneurons which control rhythmic enteric muscle contraction. lim-6 is required to specify the correct axon morphology of these neurons and also regulates expression of glutamic acid decarboxylase, the rate limiting enzyme of GABA synthesis in these neurons. Moreover, lim-6 gene activity and GABA signaling regulate neuroendocrine outputs of the nervous system. In the chemosensory system lim-6 regulates the asymmetric expression of a probable chemosensory receptor. lim-6 is also required in epithelial cells for uterine morphogenesis. We compare the function of lim-6 to those of other LIM homeobox genes in C. elegans and suggest that LIM homeobox genes share the common theme of controlling terminal neural differentiation steps that when disrupted lead to specific neuroanatomical and neural function defects.  (+info)

Stem cells: A tale of two kingdoms. (19/9183)

Homologous genes have recently been shown to regulate stem cell maintenance in animals and plants. This discovery should facilitate elucidation of the poorly understood factors that control stem cell maintenance and differentiation.  (+info)

Reciprocal EGF signaling back to the uterus from the induced C. elegans vulva coordinates morphogenesis of epithelia. (20/9183)

BACKGROUND: Reciprocal signaling between distinct tissues is a general feature of organogenesis. Despite the identification of developmental processes in which coordination requires reciprocal signaling, little is known regarding the underlying molecular details. Here, we use the development of the uterine-vulval connection in the nematode Caenorhabditis elegans as a model system to study reciprocal signaling. RESULTS: In C. elegans, development of the uterine-vulval connection requires the specification of uterine uv1 cells and morphogenesis of 1 degrees -derived vulval cells. LIN-3, an epidermal growth factor (EGF) family protein, is first produced by the gonadal anchor cell to induce vulval precursor cells to generate vulval tissue. We have shown that lin-3 is also expressed in the 1 degrees vulval lineage after vulval induction and that the 1 degrees vulva is necessary to induce the uv1 uterine cell fate. Using genetic and cell biological analyses, we found that the specification of uterine uv1 cells is dependent on EGF signaling from cells of the 1 degrees vulval lineages to a subset of ventral uterine cells of the gonad. RAS and RAF are necessary for this signaling. We also found that EGL-38, a member of the PAX family of proteins, is necessary for transcription of lin-3 in the vulva but not in the anchor cell. A let-23 mutation that confers ligand-independent activity bypasses the requirement for EGL-38 in specification of the uv1 cell fate. CONCLUSIONS: We have shown how relatively simple EGF signals can be used reciprocally to specify the uterine-vulval connection during C. elegans development.  (+info)

Sec24 proteins and sorting at the endoplasmic reticulum. (21/9183)

COPII proteins are necessary to generate secretory vesicles at the endoplasmic reticulum. In yeast, the Sec24p protein is the only COPII component in which two close orthologues have been identified. By using gene knock-out in yeast, we found that the absence of one of these Sec24 orthologues resulted in a selective secretion defect for a subset of proteins released into the medium. Data base searches revealed the existence of an entire family of Sec24-related proteins in humans, worms, flies, and plants. We identified and cloned two new human cDNAs encoding proteins homologous to yeast Sec24p, in addition to two human cDNAs already present within the data bases. The entire Sec24 family identified to date is characterized by clusters of highly conserved residues within the 2/3 carboxyl-terminal domain of all the proteins and a divergent amino terminus domain. Human (h) Sec24 orthologues co-immunoprecipitate with hSec23Ap and migrate as a complex by size exclusion chromatography. Immunofluorescence microscopy confirmed that these proteins co-localize with hSec23p and hSec13p. Together, our data suggest that in addition to its role in the shaping up of the vesicle, the Sec23-24p complex may be implicated in cargo selection and concentration.  (+info)

Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. (22/9183)

The human PTEN tumor suppressor gene is mutated in a wide variety of sporadic tumors. To determine the function of PTEN in vivo we have studied a PTEN homolog in Caenorhabditis elegans. We have generated a strong loss-of-function allele of the PTEN homolog and shown that the deficient strain is unable to enter dauer diapause. An insulin-like phosphatidylinositol 3-OH kinase (PI3'K) signaling pathway regulates dauer-stage entry. Mutations in either the daf-2 insulin receptor-like (IRL) gene or the age-1 encoded PI3'K catalytic subunit homolog cause constitutive dauer formation and also affect the life span, brood size, and metabolism of nondauer animals. Strikingly, loss-of-function mutations in the age-1 PI3'K and daf-2 IRL genes are suppressed by loss-of-function mutations in the PTEN homolog. We establish that the PTEN homolog is encoded by daf-18, a previously uncloned gene that has been shown to interact genetically with the DAF-2 IRL AGE-1 PI3'K signaling pathway. This interaction provides clear genetic evidence that PTEN acts to antagonize PI3'K function in vivo. Given the conservation of the PI3'K signaling pathway between C. elegans and mammals, the analysis of daf-18 PTEN mutant nematodes should shed light on the role of human PTEN in the etiology of metabolic disease, aging, and cancer.  (+info)

Evidence for a physical interaction between presenilin and Notch. (23/9183)

Genetic analyses in Caenorhabditis elegans demonstrate that sel-12 and hop-1, homologues of the Alzheimer's disease-associated presenilin genes, modify signaling through LIN-12 and GLP-1, homologues of the Notch cell surface receptor. To gain insight into the biochemical basis of this genetic interaction, we tested the possibility that presenilin-1 (PS1) physically associates with the Notch1 receptor in mammalian cells. Notch1 and PS1 coimmunoprecipitated from transiently transfected human embryonic kidney 293 cell lysates in a detergent-sensitive manner, consistent with a noncovalent physical association between the two proteins. The interaction predominantly occurred early in the secretory pathway prior to Notch cleavage in the Golgi, because PS1 immunoprecipitation preferentially recovered the full-length Notch1 precursor. When PS1 was immunoprecipitated from 293 cells that had been metabolically labeled with [35S]methionine and [35S]cysteine, Notch1 was the primary protein detected in PS1 immunoprecipitates, suggesting that this interaction is specific. Furthermore, endogenous Notch and presenilin coimmunoprecipitated from cultured Drosophila cells, indicating that physical interaction can occur at physiological expression levels. These results suggest that the genetic relationship between presenilins and the Notch signaling pathway derives from a direct physical association between these proteins in the secretory pathway.  (+info)

Evolution of sperm size in nematodes: sperm competition favours larger sperm. (24/9183)

In the free-living rhabditid nematode Caenorhabditis elegans, sperm size is a determinant of sperm competitiveness. Larger sperm crawl faster and physically displace smaller sperm to take fertilization priority, but not without a cost: larger sperm are produced at a slower rate. Here, we investigate the evolution of sperm size in the family Rhabditidae by comparing sperm among 19 species, seven of which are hermaphroditic (self-fertile hermaphrodites and males), the rest being gonochoristic (females and males). We found that sperm size differed significantly with reproductive mode: males of gonochoristic species had significantly larger sperm than did males of the hermaphroditic species. Because males compose 50% of the populations of gonochoristic species but are rare in hermaphroditic species, the risk of male-male sperm competition is greater in gonochoristic species. Larger sperm have thus evolved in species with a greater risk of sperm competition. Our results support recent studies contending that sperm size may increase in response to sperm competition.  (+info)