Comparative efficacy of two microdoses of a potentized homoeopathic drug, Cadmium Sulphoricum, in reducing genotoxic effects produced by cadmium chloride in mice: a time course study. (57/347)

BACKGROUND: Cadmium poisoning in the environment has assumed an alarming problem in recent years. Effective antimutagenic agents which can reverse or combat cadmium induced genotoxicity in mice have not yet been reported. Therefore, in the present study, following the homeopathic principle of "like cures like", we tested the efficacy of two potencies of a homeopathic drug, Cadmium Sulphoricum (Cad Sulph), in reducing the genotoxic effects of Cadmium chloride in mice. Another objective was to determine the relative efficacy of three administrative modes, i.e. pre-, post- and combined pre and post-feeding of the homeopathic drugs. For this, healthy mice, Mus musculus, were intraperitoneally injected with 0.008% solution of CdCl2 @ 1 ml/100 gm of body wt (i.e. 0.8 mcg/gm of bw), and assessed for the genotoxic effects through such studies as chromosome aberrations (CA), micronucleated erythrocytes (MNE), mitotic index (MI) and sperm head anomaly (SHA), keeping suitable succussed alcohol fed (positive) and CdCl2 untreated normal (negative) controls. The CdCl2 treated mice were divided into 3 subgroups, which were orally administered with the drug prior to, after and both prior to and after injection of CdCl2 at specific fixation intervals and their genotoxic effects were analyzed. RESULTS: While the CA, MNE and SHA were reduced in the drug fed series as compared to their respective controls, the MI showed an apparent increase. The combined pre- and post-feeding of Cad Sulph showed maximum reduction of the genotoxic effects. CONCLUSIONS: Both Cad Sulph-30 and 200 were able to combat cadmium induced genotoxic effects in mice and that combined pre- and post-feeding mode of administration was found to be most effective in reducing the genotoxic effect of CdCl2 followed by the post-feeding mode.  (+info)

Calcineurin-dependent mitochondrial disturbances in calcium-induced apoptosis of human immunodeficiency virus gp160-expressing CD4+ cells. (58/347)

In CD4+ UE160 cells with inducible expression of gp160, mechanisms of apoptosis induced by human immunodeficiency virus (HIV) Env protein were analyzed. Induction of gp160 caused intracellular calcium increase followed by the release of cytochrome c from mitochondria, which was inhibited by calcineurin inhibitors. Association of BAD with Bcl-xL was observed, and a portion of BAD was dephosphorylated after induction of gp160. These data suggested that calcineurin plays a role in the HIV Env-induced apoptosis in a mitochondrion-dependent way.  (+info)

Differential hepatotoxicity induced by cadmium in Fischer 344 and Sprague-Dawley rats. (59/347)

A number of reports document that Fischer 344 (F344) rats are more susceptible to chemically induced liver injury than Sprague-Dawley (SD) rats. Cadmium (CdCl2), a hepatotoxicant that does not require bioactivation, was used to better define the biological events that are responsible for the differences in liver injury between F344 and SD rats. CdCl2 (3 mg/kg) produced hepatotoxicity in both rat strains, but the hepatic injury was 18-fold greater in F344 rats as assessed by plasma alanine aminotransferase (ALT) activity. This difference in toxicity was not observed when isolated hepatocytes were incubated with CdCl2 in vitro, indicating that other cell types contribute to Cd-induced hepatotoxicity in vivo. Indeed, the sieve plates of hepatic endothelial cells (EC) in F344 rats were damaged to a greater degree than EC in SD rats. Additionally, Kupffer cell (KC) inhibition reduced hepatotoxicity in both strains, suggesting that this cell type is involved in the progression of CdCl2-induced hepatotoxicity. Moreover, enhanced synthesis of heat shock protein 72 occurred earlier in the SD rat. Maximal levels of hepatic metallothionein (MT), a protein associated with cadmium tolerance, were greater in SD rats. These protective factors may limit CdCl2-induced hepatocellular injury in SD compared with F344 rats by reducing KC activation and the subsequent inflammatory response that allows for the progression of hepatic injury.  (+info)

Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel. (60/347)

Hyperpolarization-activated cation (HCN) channels regulate pacemaking activity in cardiac cells and neurons. Our previous work using the specific HCN channel blocker ZD7288 provided evidence for an intracellular activation gate for these channels because it appears that ZD7288, applied from the intracellular side, can enter and leave HCN channels only at voltages where the activation gate is opened (Shin, K.S., B.S. Rothberg, and G. Yellen. 2001. J. Gen. Physiol. 117:91-101). However, the ZD7288 molecule is larger than the Na(+) or K(+) ions that flow through the open channel. In the present study, we sought to resolve whether the voltage gate at the intracellular entrance to the pore for ZD7288 also can be a gate for permeant ions in HCN channels. Single residues in the putative pore-lining S6 region of an HCN channel (cloned from sea urchin; spHCN) were substituted with cysteines, and the mutants were probed with Cd(2+) applied to the intracellular side of the channel. One mutant, T464C, displayed rapid irreversible block when Cd(2+) was applied to opened channels, with an apparent blocking rate of approximately 3 x 10(5) M(-1)s(-1). The blocking rate was decreased for channels held at more depolarized voltages that close the channels, which is consistent with the Cd(2+) access to this residue being gated from the intracellular side of the channel. 464C channels could be recovered from Cd(2+) inhibition in the presence of a dithiol applied to the intracellular side. The rate of this recovery also was reduced when channels were held at depolarized voltages. Finally, Cd(2+) could be trapped inside channels that were composed of WT/464C tandem-linked subunits, which could otherwise recover spontaneously from Cd(2+) inhibition. Thus, Cd(2+) escape is also gated at the intracellular side of the channel. Together, these results are consistent with a voltage-controlled structure at the intracellular side of the spHCN channel that can gate the flow of cations through the pore.  (+info)

Molecular cloning and functional analysis of a novel cadmium-responsive proto-oncogene. (61/347)

The molecular mechanisms potentially responsible for cell transformation and tumorigenesis induced by cadmium, a human carcinogen, were investigated by differential gene expression analysis of BALB/c-3T3 cells transformed with cadmium chloride (CdCl(2)). Differential display analysis of gene expression revealed consistent overexpression of mouse translation initiation factor 3 (TIF3; GenBank accession number AF271072) in the cells transformed with CdCl(2) when compared with nontransformed cells. The predicted protein encoded by TIF3 cDNA exhibited 99% similarity to human eukaryotic initiation factor 3 p36 protein. A M(r) 36,000 protein was detected in cells transfected with an expression vector containing TIF3 cDNA. Transfection of NIH3T3 cells with an expression vector containing TIF3 cDNA resulted in overexpression of the encoded protein, and this was associated with cell transformation, as evidenced by the appearance of transformed foci exhibiting anchorage-independent growth on soft agar and tumorigenic potential in nude mice. Expression of the antisense RNA against TIF3 mRNA resulted in significant reversal of oncogenic potential of the CdCl(2)-transformed BALB/c-3T3 cells. Taken together, these findings demonstrate for the first time that the cell transformation and tumorigenesis induced by CdCl(2) are due, at least in part, to the overexpression of TIF3, a novel cadmium-responsive proto-oncogene.  (+info)

Role of NO in endothelin-regulated drug transport in the renal proximal tubule. (62/347)

We previously demonstrated in intact killifish renal proximal tubules that endothelin (ET), acting through an ET(B) receptor and protein kinase C (PKC), reduced transport mediated by multidrug resistance-associated protein 2 (Mrp2), i.e., luminal accumulation of fluorescein methotrexate (FL-MTX) (Masereeuw R, Terlouw SA, Van Aubel RAMH, Russel FGM, and Miller DS. Mol Pharmacol 57: 59-67, 2000). In the present study, we used confocal microscopy and quantitative image analysis to measure Mrp2-mediated transport of FL-MTX in killifish tubules as an indicator of the status of this ET-fired, intracellular signaling pathway. Exposing tubules to sodium nitroprusside (SNP), a nitric oxide (NO) donor, signaled a reduction in luminal accumulation of FL-MTX, which suggested pathway activation. N(G)-monomethyl-L-arginine (L-NMMA), an NO synthase inhibitor, blocked the action of ET-1 on transport. Because SNP effects on transport were blocked by bisindoylmaleide, a PKC-selective inhibitor, but not by RES-701-1, an ET(B)-receptor antagonist, generation of NO occurred after ET(B) receptor signaling but before PKC activation. NO generation was implicated in the actions of several nephrotoxicants, i.e., diatrizoate, gentamicin, amikacin, HgCl(2), and CdCl(2), each of which decreased Mrp2-mediated transport by activating ET signaling. For each nephrotoxicant, decreased FL-MTX transport was prevented when tubules were exposed to L-NMMA. ET-1 and each nephrotoxicant stimulated NO production by the tubules, as determined by a fluorescence-based assay. Together, the data show that NO generation follows ET binding to the basolateral ET(B) receptor and that, in activating the ET-signaling pathway, nephrotoxicants produce NO, a molecule that could contribute to subsequent toxic effects.  (+info)

Leydig cell-derived heme oxygenase-1 regulates apoptosis of premeiotic germ cells in response to stress. (63/347)

Stress-induced downregulation of spermatogenesis remains poorly understood. This study examined the induction of heme oxygenase-1 (HO-1), a carbon monoxide-generating inducible enzyme, in modulation of spermatogenesis. Rats were exposed to cadmium chloride (CdCl(2)), a stressor causing oligozoospermia, and HO-1-induction was monitored by following HO isozyme expression. CdCl(2)-treated testes increased HO-1 activity and suppressed microsomal cytochromes P450, which are required for steroidogenesis. CdCl(2)-elicited HO-1 occurred mostly in Leydig cells and coincided with CO generation, as judged by bilirubin-IXalpha immunoreactivity. Under these circumstances, germ cells in peripheral regions of seminiferous tubules exhibited apoptosis; laser flow cytometry revealed that these apoptotic cells involve diploid and tetraploid germ cells, suggesting involvement of spermatogonia and primary spermatocytes in CdCl(2)-elicited apoptosis. Pretreatment with zinc protoporphyrin-IX, an HO inhibitor, but not copper protoporphyrin-IX, which does not block the enzyme, attenuated the CdCl(2)-induced apoptosis. Such antiapoptotic effects of zinc protoporphyrin-IX were repressed by supplementation of dichloromethane, a CO donor. Upon CdCl(2)-treatment, both Sertoli cells and the germ cells upregulated Fas ligand; this event was also suppressed by zinc protoporphyrin-IX and restored by dichloromethane. Thus, Leydig cells appear to use HO-1-derived CO to trigger apoptosis of premeiotic germ cells and thereby modulate spermatogenesis under conditions of stress.  (+info)

Relationship between toxicity and cadmium accumulation in rats given low amounts of cadmium chloride or cadmium-polluted rice for 22 months. (64/347)

To clarify toxic effects of long-term oral administration of low dose cadmium (Cd) on the liver and kidney, six groups of female Sprague-Dawley rats were fed a diet containing Cd-polluted rice or CdCl2 at concentrations up to 40 ppm, and killed after 12, 18, and 22 months. With toxicological parameters, including histopathology, there was no evidence of Cd-related hepato-renal toxicity, despite a slight decrease of mean corpuscular volume and mean corpuscular hemoglobin of red blood cells with 40 ppm CdCl2. Dose-dependent accumulation of Cd was observed in the liver and kidneys with peak levels of 130 +/- 42 micrograms/g and 120 +/- 20 micrograms/g, respectively, at 18 months in animals treated with 40 ppm CdCl2. A dose-dependent increase in urinary Cd levels became evident with time. Induction of metallothionein (MT) was also observed in the liver and kidney with a high correlation to the corresponding Cd levels. In the proximal renal tubular epithelia of 40 ppm CdCl2-treated rats at 22 months, prominent accumulation of Cd was observed in secondary lysosomes associated with MT deposits in their exocytotic residual bodies. The results demonstrated that, in contrast to the case with high-dose Cd-administration, renal toxicity is not induced by long-term oral administration of low amounts of Cd, although tissue accumulation does occur. Possible protective mechanisms may be operating.  (+info)