Breast carcinoma developing in patients on hormone replacement therapy: a histological and immunohistological study. (9/6757)

AIM: To study the histopathological features of breast carcinoma developing in postmenopausal patients on hormone replacement therapy (HRT). METHODS: The sample comprised 60 patients with invasive breast carcinoma including 31 who had received HRT at or shortly before presentation, and 29 who had not. Details concerning their tumour size, histological type and grade, lymph node status, and oestrogen and progesterone receptor status were compared. Immunoperoxidase staining for Bcl-2, p53, and E-cadherin was carried out on paraffin sections of all 60 patients. The results were then statistically analysed. RESULTS: Tumours detected in HRT patients were significantly smaller (mean 17 mm v 25 mm; p = 0.0156) and of a lower histological grade (p = 0.0414) than those detected in non-HRT patients. The incidence of invasive lobular carcinoma was slightly higher in HRT patients (19% v 14%). Immunohistologically, 87% of HRT tumours were Bcl-2 positive (compared with 79% in the control group), 29% were p53 positive (45% in the control), and 48% were E-cadherin positive (72% in the control group). Although the differences were not statistically significant there was a trend towards higher incidence of p53 negative and E-cadherin negative tumours in HRT patients. CONCLUSIONS: Breast carcinomas detected in patients on HRT have a significantly higher incidence of two favourable prognostic features (small size and a low histological grade). They also show a trend, statistically not significant, of being p53 negative and E-cadherin negative; this may be related to the slightly higher incidence of invasive lobular tumours in these patients.  (+info)

Trophectoderm differentiation in the bovine embryo: characterization of a polarized epithelium. (10/6757)

Blastocytst formation is dependent on the differentiation of a transporting epithelium, the trophectoderm, which is coordinated by the embryonic expression and cell adhesive properties of E-cadherin. The trophectoderm shares differentiative characteristics with all epithelial tissues, including E-cadherin-mediated cell adhesion, tight junction formation, and polarized distribution of intramembrane proteins, including the Na-K ATPase. The present study was conducted to characterize the mRNA expression and distribution of polypeptides encoding E-cadherin, beta-catenin, and the tight junction associated protein, zonula occludens protein 1, in pre-attachment bovine embryos, in vitro. Immunocytochemistry and gene specific reverse transcription--polymerase chain reaction methods were used. Transcripts for E-cadherin and beta-catenin were detected in embryos of all stages throughout pre-attachment development. Immunocytochemistry revealed E-cadherin and beta-catenin polypeptides evenly distributed around the cell margins of one-cell zygotes and cleavage stage embryos. In the morula, detection of these proteins diminished in the free apical surface of outer blastomeres. E-cadherin and beta-catenin became restricted to the basolateral membranes of trophectoderm cells of the blastocyst, while maintaining apolar distributions in the inner cell mass. Zonula occludens protein 1 immunoreactivity was undetectable until the morula stage and first appeared as punctate points between the outer cells. In the blastocyst, zonula occludens protein 1 was localized as a continuous ring at the apical points of trophectoderm cell contact and was undetectable in the inner cell mass. These results illustrate that the gene products encoding E-cadherin, beta-catenin and zonula occludens protein 1 are expressed and maintain cellular distribution patterns consistent with their predicted roles in mediating trophectoderm differentiation in in vitro produced bovine embryos.  (+info)

Regulated expression of cadherin-11 in human extravillous cytotrophoblasts undergoing aggregation and fusion in response to transforming growth factor beta 1. (11/6757)

Transforming growth factor beta 1 is believed to be a key regulator of extravillous cytotrophoblast invasion during the first trimester of pregnancy. In addition, this growth factor has been shown to regulate cellular differentiation and fusion in cultured extravillous cytotrophoblasts. To date, the cellular mechanisms by which transforming growth factor beta 1 promotes these developmental processes remain poorly understood. Recent studies indicate that the expression of the novel cadherin subtype, known as cadherin-11, is associated with the terminal differentiation and fusion of villous cytotrophoblasts isolated from the human term placenta and human myoblasts in vitro. In this study, cadherin-11 mRNA and protein expression were examined in primary cultures of human extravillous cytotrophoblasts cultured in the presence of increasing concentrations of transforming growth factor beta 1 using northern and western blot analysis, respectively. Transforming growth factor beta 1 was shown to increase cadherin-11 mRNA and protein expression in these cultured extravillous cytotrophoblasts in a dose-dependent manner. Cadherin-11 was further localized to the large cellular aggregates and multinucleated cells that formed in response to increasing concentrations of transforming growth factor beta 1 using immunocytochemistry. Collectively, these observations suggest that the morphogenetic effects of transforming growth factor beta 1 on cultured extravillous cytotrophoblasts are mediated, at least in part, by an increase in cadherin-11 expression. This study not only adds to the understanding of the cellular mechanisms by which transforming growth factor beta 1 promotes trophoblast differentiation and fusion but provides useful insight into the cell biology of the cadherins.  (+info)

Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal cancer. (12/6757)

Inherited mutations in the E-cadherin gene ( CDH1 ) were described recently in three Maori kindreds with familial gastric cancer. Familial gastric cancer is genetically heterogeneous and it is not clear what proportion of gastric cancer susceptibility in non-Maori populations is due to germline CDH1 mutations. Therefore, we screened eight familial gastric cancer kindreds of British and Irish origin for germline CDH1 mutations, by SSCP analysis of all 16 exons and flanking sequences. Each family contained: (i) two cases of gastric cancer in first degree relatives with one affected before age 50 years; or (ii) three or more cases of gastric cancer. Novel germline CDH1 mutations (a nonsense and a splice site) were detected in two families (25%). Both mutations were predicted to truncate the E-cadherin protein in the signal peptide domain. In one family there was evidence of non-penetrance and susceptibility to both gastric and colorectal cancer; thus, in addition to six cases of gastric cancer, a CDH1 mutation carrier developed colorectal cancer at age 30 years. We have confirmed that germline mutations in the CDH1 gene cause familial gastric cancer in non-Maori populations. However, only a minority of familial gastric cancers can be accounted for by CDH1 mutations. Loss of E-cadherin function has been implicated in the pathogenesis of sporadic colorectal and other cancers, and our findings provide evidence that germline CDH1 mutations predispose to early onset colorectal cancer. Thus, CDH1 should be investigated as a cause of inherited susceptibility to both gastric and colorectal cancers.  (+info)

Expression of the rat homologue of the Drosophila fat tumour suppressor gene. (13/6757)

We have sequenced and defined the expression during rat embryogenesis of the protocadherin fat, the murine homologue of a Drosophila tumour suppressor gene. As previously described for human fat, the sequence encodes a large protocadherin with 34 cadherin repeats, five epidermal growth factor (EGF)-like repeats containing a single laminin A-G domain and a putative transmembrane portion followed by a cytoplasmic sequence. This cytoplasmic sequence shows homology to the b-catenin binding regions of classical cadherin cytoplasmic tails and also ends with a PDZ domain-binding motif. In situ hybridization studies at E15 show that fat is predominately expressed in fetal epithelial cell layers and in the CNS, although expression is also seen in tongue musculature and condensing cartilage. Within the CNS, expression is seen in the germinal regions and in areas of developing cortex, and this neural expression pattern is also seen at later embryonic (E18) and postnatal stages. No labelling was seen in adult tissues except in the CNS, where the remnant of the germinal zones, as well as the dentate gyrus, continue to express fat.  (+info)

The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. (14/6757)

Defects in beta-catenin regulation contribute to the neoplastic transformation of mammalian cells. Dysregulation of beta-catenin can result from missense mutations that affect critical sites of phosphorylation by glycogen synthase kinase 3beta (GSK3beta). Given that phosphorylation can regulate targeted degradation of beta-catenin by the proteasome, beta-catenin might interact with an E3 ubiquitin ligase complex containing an F-box protein, as is the case for certain cell cycle regulators. Accordingly, disruption of the Drosophila F-box protein Slimb upregulates the beta-catenin homolog Armadillo. We reasoned that the human homologs of Slimb - beta-TrCP and its isoform beta-TrCP2 (KIAA0696) - might interact with beta-catenin. We found that the binding of beta-TrCP to beta-catenin was direct and dependent upon the WD40 repeat sequences in beta-TrCP and on phosphorylation of the GSK3beta sites in beta-catenin. Endogenous beta-catenin and beta-TrCP could be coimmunoprecipitated from mammalian cells. Overexpression of wild-type beta-TrCP in mammalian cells promoted the downregulation of beta-catenin, whereas overexpression of a dominant-negative deletion mutant upregulated beta-catenin protein levels and activated signaling dependent on the transcription factor Tcf. In contrast, beta-TrCP2 did not associate with beta-catenin. We conclude that beta-TrCP is a component of an E3 ubiquitin ligase that is responsible for the targeted degradation of phosphorylated beta-catenin.  (+info)

The role of cell adhesion molecules in Drosophila heart morphogenesis: faint sausage, shotgun/DE-cadherin, and laminin A are required for discrete stages in heart development. (15/6757)

Heart development in the Drosophila embryo starts with the specification of cardiac precursors from the dorsal edge of the mesoderm through signaling from the epidermis. Cardioblasts then become aligned in a single row of cells that migrate dorsally. After contacting their contralateral counterparts, cardioblasts undergo a cytoskeletal rearrangement and form a lumen. Its simple architecture and cellular composition makes the heart a good system to study mesodermal patterning, intergerm layer signaling, and the function of cell adhesion molecules (CAMs) during morphogenesis. In this paper we focus on three adhesion molecules, faint sausage (fas), shotgun/DE-cadherin (shg/DE-Cad), and laminin A (lam A), that are essential for heart development. fas encodes an Ig-like CAM and is required for the correct number of cardioblasts to become specified, as well as proper alignment of cardioblasts. shg/DE-Cad is expressed and required at a later stage than fas; in embryos lacking this gene, cardioblasts are specified normally and become aligned, but do not form a lumen. Additionally, cardioblasts of shg mutant embryos show a redistribution of phosphotyrosine as well as a loss of Armadillo from the membrane, indicating defects in cell polarity. The shg phenotype could be phenocopied by applying EGTA or cytochalasin D, supporting the view that Ca2+-dependent adhesion and the actin cytoskeleton are instrumental for heart lumen formation. As opposed to cell-cell adhesion, cell-substrate adhesion mechanisms are not required for heart morphogenesis, but only for maintenance of the differentiated heart. Embryos lacking the lam A gene initially developed a normal heart, but showed twists and breaks of cardioblasts at late embryonic stages. We discuss our findings in light of recent results that elucidate the function of different adhesion systems in vertebrate heart development.  (+info)

E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. (16/6757)

Beta-catenin is a multifunctional protein found in three cell compartments: the plasma membrane, the cytoplasm and the nucleus. The cell has developed elaborate ways of regulating the level and localization of beta-catenin to assure its specific function in each compartment. One aspect of this regulation is inherent in the structural organization of beta-catenin itself; most of its protein-interacting motifs overlap so that interaction with one partner can block binding of another at the same time. Using recombinant proteins, we found that E-cadherin and lymphocyte-enhancer factor-1 (LEF-1) form mutually exclusive complexes with beta-catenin; the association of beta-catenin with LEF-1 was competed out by the E-cadherin cytoplasmic domain. Similarly, LEF-1 and adenomatous polyposis coli (APC) formed separate, mutually exclusive complexes with beta-catenin. In Wnt-1-transfected C57MG cells, free beta-catenin accumulated and was able to associate with LEF-1. The absence of E-cadherin in E-cadherin-/- embryonic stem (ES) cells also led to an accumulation of free beta-catenin and its association with LEF-1, thereby mimicking Wnt signaling. beta-catenin/LEF-1-mediated transactivation in these cells was antagonized by transient expression of wild-type E-cadherin, but not of E-cadherin lacking the beta-catenin binding site. The potent ability of E-cadherin to recruit beta-catenin to the cell membrane and prevent its nuclear localization and transactivation was also demonstrated using SW480 colon carcinoma cells.  (+info)