Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. (1/3466)

The influence of pH on the adhesion of two Lactobacillus strains to Caco-2 human intestinal cells was investigated. One strain, Lactobacillus johnsonii La1, was adherent at any pH between 4 and 7. The other one, L. acidophilus La10, did not attach to this cell line under the same experimental conditions. On the basis of these results, we used the monoclonal antibody technique as a tool to determine differences on the surface of these bacteria and to identify a factor for adhesion. Mice were immunized with live La1, and the hybridomas produced by fusion of spleen cells with ONS1 cells were screened for the production of antibodies specific for L. johnsonii La1. A set of these monoclonal antibodies was directed against a nonproteinaceous component of the L. johnsonii La1 surface. It was identified as lipoteichoic acid (LTA). This molecule was isolated, chemically characterized, and tested in adhesion experiments in the same system. The adhesion of L. johnsonii La1 to Caco-2 cells was inhibited in a concentration-dependent way by purified LTA as well as by L. johnsonii La1 culture supernatant that contained LTA. These results showed that the mechanism of adhesion of L. johnsonii La1 to human Caco-2 cells involves LTA.  (+info)

Cytochrome P-450 1A1 expression in human small bowel: interindividual variation and inhibition by ketoconazole. (2/3466)

Human cytochrome P-450 1A1 (CYP1A1) is located primarily in extrahepatic tissues. To begin the characterization of this enzyme in the small intestine, we screened a bank of 18 human small intestinal microsomal preparations for CYP1A1 catalytic [(7-ethoxyresorufin O-deethylase (EROD)] activity and protein content. Although EROD activity was below detectable limits in 12 of the preparations, 6 exhibited measurable activity (1.4-123.5 pmol/min/mg), some exceeding that for 2 human liver microsomal preparations (11.0 and 26.4 pmol/min/mg). This variation was not due to variable quality of the preparations because each sample displayed readily detectable CYP3A4 catalytic activity and immunoreactive protein. We inadvertently found that intestinal EROD activity was inhibitable by ketoconazole at a concentration commonly believed to selectively inhibit CYP3A4. The possibility that CYP3A4 metabolizes 7-ethoxyresorufin was excluded because there was no correlation between intestinal CYP3A4 catalytic and EROD activity, and cDNA-expressed human CYP3A4 exhibited no EROD activity. Moreover, CYP1A1 immunoreactive protein was most abundant in the three intestinal preparations with the highest EROD activities, and the mean apparent Ki of ketoconazole observed for these three preparations (40 nM) was essentially identical with that for cDNA-expressed human CYP1A1 (37 nM). In summary, there is large interindividual variation in CYP1A1 expression in human small bowel, and ketoconazole is not a selective CYP3A4 inhibitor in in vitro metabolism studies involving intestinal tissue obtained from some individuals. These observations raise the possibility that in vivo drug interactions involving ketoconazole could result from CYP1A1 inhibition in the intestine in some individuals.  (+info)

CREB-binding [corrected] protein interacts with the homeodomain protein Cdx2 and enhances transcriptional activity. (3/3466)

Cdx2 encodes for a homeodomain protein that is expressed in intestinal epithelial cells. The Cdx2 protein triggers intestinal differentiation in cell lines and is necessary for maintenance of the intestinal phenotype in mice. CBP (cAMP response element-binding protein) is a transcriptional co-activator that interacts with many transcription factors and components of the basal transcriptional machinery. In this study, we demonstrate that CBP is markedly induced upon differentiation of the Caco-2 intestinal cell line and augments Cdx2-dependent transcriptional activity. Cdx2 interacts with the amino-terminal domain of CBP, and the two proteins coexist in vivo within the same nuclear protein complex. Moreover, expression of the CBP domain that interacts with Cdx2 acts as a dominant-negative inhibitor of transcriptional activation by Cdx2. These findings demonstrate a direct interaction between an intestinal homeodomain protein and CBP and suggest that CBP participates in the network of transcriptional proteins that direct intestinal differentiation.  (+info)

Regulation of the human apolipoprotein AIV gene expression in transgenic mice. (4/3466)

The apolipoprotein (Apo) AI-CIII-AIV gene cluster has a complex pattern of gene expression that is modulated by both gene- and cluster-specific cis-acting elements. In particular the regulation of Apo AIV expression has been previously studied in vivo and in vitro including several transgenic mouse lines but a complete, consistent picture of the tissue-specific controls is still missing. We have analysed the role of the Apo AIV 3' flanking sequences in the regulation of gene expression using both in vitro and in vivo systems including three lines of transgenic mice. The transgene consisted of a human fragment containing 7 kb of the 5' flanking region, the Apo AIV gene itself and 6 kb of the 3' flanking region (-7+6 Apo AIV). Accurate analysis of the Apo AIV mRNA levels using quantitative PCR and Northern blots showed that the 7+6 kb Apo AIV fragment confers liver-specific regulation in that the human Apo AIV transgene is expressed at approximately the same level as the endogenous mouse Apo AIV gene. In contrast, the intestinal regulation of the transgene did not follow, the pattern observed with the endogenous gene although it produced a much higher intestinal expression following the accepted human pattern. Therefore, this animal model provides an excellent substrate to design therapeutic protocols for those metabolic derangements that may benefit from variations in Apo AIV levels and its anti-atherogenic effect.  (+info)

Epidermal growth factor regulates fatty acid uptake and metabolism in Caco-2 cells. (5/3466)

Epidermal growth factor (EGF) has been reported to stimulate carbohydrate, amino acid, and electrolyte transport in the small intestine, but its effects on lipid transport are poorly documented. This study aimed to investigate EGF effects on fatty acid uptake and esterification in a human enterocyte cell line (Caco-2). EGF inhibited cell uptake of [14C]palmitate and markedly reduced its incorporation into triglycerides. In contrast, the incorporation in phospholipids was enhanced. To elucidate the mechanisms involved, key steps of lipid synthesis were investigated. The amount of intestinal fatty acid-binding protein (I-FABP), which is thought to be important for fatty acid absorption, and the activity of diacylglycerol acyltransferase (DGAT), an enzyme at the branch point of diacylglycerol utilization, were reduced. EGF effects on DGAT and on palmitate esterification occurred at 2-10 ng/ml, whereas effects on I-FABP and palmitate uptake occurred only at 10 ng/ml. This suggests that EGF inhibited palmitate uptake by reducing the I-FABP level and shifted its utilization from triglycerides to phospholipids by inhibiting DGAT. This increase in phospholipid synthesis might play a role in the restoration of enterocyte absorption function after intestinal mucosa injury.  (+info)

The isoflavone genistein inhibits internalization of enteric bacteria by cultured Caco-2 and HT-29 enterocytes. (6/3466)

The dietary isoflavone genistein is the focus of much research involving its role as a potential therapeutic agent in a variety of diseases, including cancer and heart disease. However, there is recent evidence that dietary genistein may also have an inhibitory effect on extraintestinal invasion of enteric bacteria. To study the effects of genistein on bacterial adherence and internalization by confluent enterocytes, Caco-2 and HT-29 enterocytes (cultivated for 15-18 d and 21-24 d, respectively) were pretreated for 1 h with 0, 30, 100, or 300 micromol/L genistein, followed by 1-h incubation with pure cultures of Listeria monocytogenes, Salmonella typhimurium, Proteus mirabilis, or Escherichia coli. Pretreatment of Caco-2 and HT-29 enterocytes with genistein inhibited bacterial internalization in a dose-dependent manner (r = 0.60-0.79). Compared to untreated enterocytes, 1-h pretreatment with 300 micromol/L genistein was generally associated with decreased bacterial internalization (P < 0. 05) without a corresponding decrease in bacterial adherence. Using Caco-2 cell cultures, decreased bacterial internalization was associated with increased integrity of enterocyte tight junctions [measured by increased transepithelial electrical resistance (TEER)], with alterations in the distribution of enterocyte perijunctional actin filaments (visualized by fluorescein-labeled phalloidin), and with abrogation of the decreased TEER associated with S. typhimurium and E. coli incubation with the enterocytes (P < 0.01). Thus, genistein was associated with inhibition of enterocyte internalization of enteric bacteria by a mechanism that might be related to the integrity of the enterocyte tight junctions, suggesting that genistein might function as a barrier-sustaining agent, inhibiting extraintestinal invasion of enteric bacteria.  (+info)

Transport of rhodamine 123, a P-glycoprotein substrate, across rat intestine and Caco-2 cell monolayers in the presence of cytochrome P-450 3A-related compounds. (7/3466)

Effects of cytochrome P-450 3A- and P-glycoprotein (P-gp)-related compounds, erythromycin, midazolam, ketoconazole, verapamil, and quinidine, on transport of rhodamine 123 (Rho-123), a P-gp substrate, were studied in rat intestine and in Caco-2 cells. Ileum was mainly used in rat studies because this segment showed greater P-gp-mediated Rho-123 transport. In an in vitro everted rat ileum, all the compounds examined significantly inhibited the transport of Rho-123 from serosal to mucosal surfaces across the intestine, with different inhibitory potencies among these compounds. In an in vivo rat study, the exsorption of Rho-123 from blood to the intestinal lumen, which was evaluated as exsorption clearance of Rho-123 under a steady-state plasma concentration of Rho-123, was also inhibited when these compounds were added to the intestinal lumen. Similarly, transepithelial transport of Rho-123 from the basolateral to apical side across Caco-2 cell monolayers was inhibited by these compounds. A linear relationship was observed in their inhibitory potencies on Rho-123 transport between in vitro and in vivo studies using rat ileum and between studies with rat ileum and Caco-2 cells. P-gp-mediated transport across the intestine was found to be inhibited not only by P-gp-related but also by all the cytochrome P-450 3A-related compounds examined. Within experimental error, the relative inhibitory potencies were the same between the studies with rat ileum (in vivo, in vitro) and those with Caco-2 cells. Thus, it is suggested that the function of P-gp and its sensitivity to these drugs may be similar in rat intestine and Caco-2 cells.  (+info)

Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line. (8/3466)

The results of previous work performed in our laboratory using an in situ perfusion technique in rats and rabbit apical brush border membrane vesicles have suggested that the intestinal uptake of valacyclovir (VACV) appears to be mediated by multiple membrane transporters. Using these techniques, it is difficult to characterize the transport kinetics of VACV with each individual transporter in the presence of multiple known or unknown transporters. The purpose of this study was to characterize the interaction of VACV and the human intestinal peptide transporter using Chinese hamster ovary (CHO) cells that overexpress the human intestinal peptide transporter (hPEPT1) gene. VACV uptake was significantly greater in CHO cells transfected with hPEPT1 than in cells transfected with only the vector, pcDNA3. The optimum pH for VACV uptake was determined to occur at pH 7.5. Proton cotransport was not observed in hPEPT1/CHO cells, consistent with previously observed results in tissues and Caco-2 cells. VACV uptake was concentration dependent and saturable with a Michaelis-Menten constant and maximum velocity of 1.64 +/- 0.06 mM and 23.34 +/- 0.36 nmol/mg protein/5 min, respectively. A very similar Km value was obtained in hPEPT1/CHO cells and in rat and rabbit tissues and Caco-2 cells, suggesting that hPEPT1 dominates the intestinal transport properties of VACV in vitro. VACV uptake was markedly inhibited by various dipeptides and beta-lactam antibiotics, and Ki values of 12.8 +/- 2.7 and 9.1 +/- 1.2 mM were obtained for Gly-Sar and cefadroxil at pH 7.5, respectively. The present results demonstrate that VACV is a substrate for the human intestinal peptide transporter in hPEPT1/CHO cells and that although transport is pH dependent, proton cotransport is not apparent. Also, the results demonstrate that the hPEPT1/CHO cell system has use in investigating the transport kinetics of drugs with the human intestinal peptide transporter hPEPT1; however, the extrapolation of these transport properties to the in vivo situation requires further investigation.  (+info)