Examination of selected food additives and organochlorine food contaminants for androgenic activity in vitro. (9/222)

In order to produce a reporter gene assay for androgenic chemicals, a constitutive expression vector coding for the human androgen receptor and a reporter construct containing the firefly luciferase coding sequence under transcriptional control of the androgen responsive MMTV promoter were cotransfected into the androgen-insensitive human PC-3 prostate carcinoma cell line and stable transfectants selected. One colony of transfectants, PC-3 LUCAR+, was characterized further. 5alpha-Dihydrotestosterone (DHT) enhanced luciferase activity in a linear fashion for up to 3 days of culture. The Kd for DHT activation was within the range of 25.0-60.0 pM (r2 values >0.95). Flutamide competitively inhibited DHT activation (mean Ki value of 0.89 microM). Progesterone, estradiol, dexamethasone, and hydrocortisone were weak agonists (100-fold less effective than DHT) and diethylstilbestrol was without effect. The effects of organochlorine food contaminants (0, 0.1, 1.0, and 10.0 microM) on luciferase activity in PC-3 LUCAR+ cells were determined after exposure to the chemical for 18 h in the presence and absence of DHT (50 pM). 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p'-DDE) induced luciferase activity in the absence of DHT (100 microM p,p'-DDE equivalent to 50 pM DHT), but in the presence of DHT (50 pM), p,p'-DDE acted antagonistically. 2,3,7,8-Tetrachlorodibenzo-p-dioxin, kepone, butylated hydroxyanisole, and butylated hydroxytoluene all partially inhibited activation by DHT (50 pM) but alone had little or no effect. Toxaphene at 10 microM induced luciferase activity in the absence of DHT but decreased cell viability. Alpha- and delta-Hexachlorocyclohexanes (HCH) at 10 microM antagonized the DHT effect, but beta-HCH and gamma-HCH mirex, photomirex, oxychlordane, cis- and trans-nonachlor were without effect. Thus, of the chemicals tested, some interact with the human androgen receptor in vitro as agonists, others as antagonists, and some as partial agonists/antagonists.  (+info)

Modulation of the phosphatase activity of calcineurin by oxidants and antioxidants in vitro. (10/222)

Previous research has indicated that oxidants, antioxidants and the intracellular redox state regulate the activities of a variety of protein tyrosine kinases, protein tyrosine phosphatases, phospholipases and transcription factors. In order to explore the redox regulation of the serine/threonine phosphatase calcineurin, we have investigated the effects of a variety of oxidants and antioxidants on calcineurin phosphatase activity in vitro. The oxidants hydrogen peroxide, superoxide and glutathione disulfide inhibited the phosphatase activity of calcineurin in a dose-dependent manner. Incubation of purified calcineurin with the antioxidants ascorbate, ascorbate 2-phosphate, alpha-lipoic acid, N-acetyl-L-cysteine and glutathione increased phosphatase activity relative to untreated controls. In contrast, several other commonly used antioxidants, including butylated hydroxytoluene, butylated hydroxyanisole, TEMPOL (4-hydroxy-2,2,6, 6-tetramethylpiperidine-N-oxyl), Trolox (6-hydroxy-2,5,7, 8-tetramethyl-chroman-2-carboxylic acid) and dihydrolipoic acid decreased the activity of purified calcineurin, possibly through prooxidative mechanisms. Although the antioxidant pyrrolidine dithiocarbamate increased the activity of purified calcineurin, it significantly inhibited the activity of calcineurin present in crude fibroblast lysates. These results support and extend the hypothesis that redox factors modulate the phosphatase activity of calcineurin and suggest that further in vivo studies are warranted.  (+info)

Presence of a Na(+)/H(+) exchanger in acidocalcisomes of Leishmania donovani and their alkalization by anti-leishmanial drugs. (11/222)

Acidocalcisomes are acidic vacuoles present in trypanosomatids that contain most of the cellular calcium. The data presented here demonstrate that Leishmania donovani acidocalcisomes possess a Na(+)/H(+) exchanger. 3,5-Dibutyl-4-hydroxytoluene, in the concentration range of 0-20 microM, inhibited the Na(+)/H(+) exchanger, and strongly stimulated the activity of the vacuolar H(+)-ATPase responsible for vacuolar acidification. As occurs with Na(+), the cationic anti-leishmanial drugs pentamidine, WR-6026, and chloroquine promoted a fast and extensive alkalization of the L. donovani acidocalcisomes.  (+info)

Impact of antioxidants and HDL on glycated LDL-induced generation of fibrinolytic regulators from vascular endothelial cells. (12/222)

Hyperglycemia and dyslipoproteinemia are biochemical markers of diabetes mellitus (DM). Elevated levels of plasminogen activator inhibitor-1 (PAI-1) with and without reduction of tissue plasminogen activator (tPA) in plasma have been frequently found in patients with DM. Our previous studies indicated that glycation enhances low density lipoprotein (LDL)-induced production of PAI-1 and further decreases tPA generation in vascular endothelial cells (ECs). The present study demonstrated that treatment with antioxidants, butylated hydroxytoluene or vitamin E, blocked native LDL- and glycated LDL-induced changes in PAI-1 and tPA generation in ECs. Native or glycated high density lipoprotein (HDL) did not significantly alter tPA generation in ECs. Glycated but not native HDL (>/=100 microg/mL) moderately increased PAI-1 release from ECs. Cotreatment with native or glycated HDL inhibited LDL-induced or glycated LDL-induced changes in PAI-1 and tPA generation in ECs. The abundance of conjugated dienes was increased in glycated or EC-modified LDL. Treatment with butylated hydroxytoluene, vitamin E, or HDL reduced the abundance of conjugated dienes in glycated or EC-modified LDL. The effects of antioxidants and HDL on LDL-induced or its glycated LDL-induced changes in the generation of PAI-1 and tPA were also found in cultured human coronary artery ECs. The findings of the present study suggest that antioxidants and HDL may attenuate native LDL- or glycated LDL-induced changes in the generation of fibrinolytic regulators from vascular ECs, which possibly results from their inhibition on the lipid peroxidation of LDL particles. Treatment with antioxidants or hypolipidemic agents potentially improves fibrinolytic activity and reduces thrombotic tendencies in patients with DM.  (+info)

Iron-ascorbate alters the efficiency of Caco-2 cells to assemble and secrete lipoproteins. (13/222)

Although oxidative stress has been implicated in development of gut pathologies, its role in intestinal fat transport has not been investigated. We assessed the effect of Fe(2+)-ascorbate-mediated lipid peroxidation on lipid synthesis, apolipoprotein biogenesis, and lipoprotein assembly and secretion. Incubation of postconfluent Caco-2 cells with iron(II)-ascorbate (0.2 mM/2 mM) in the apical compartment significantly promoted malondialdehyde formation without affecting sucrase activity, transepithelial resistance, DNA and protein content, and cell viability. However, addition of the oxygen radical-generating system reduced 1) [(14)C]oleic acid incorporation into cellular triglycerides (15%, P < 0.0002) and phospholipids (16%, P < 0.0005); 2) de novo synthesis of cellular apolipoprotein A-I (apo A-I) (18%, P < 0.05), apo A-IV (38%, P < 0.05), and apo B-48 (45%, P < 0.003) after [(35)S]methionine addition; and 3) production of chylomicrons (50%), VLDL (40%), LDL (37%), and HDL (30%) (all P < 0.0001). In contrast, increased total cellular cholesterol formation (96%, P < 0.0001), assayed by [(14)C]acetate incorporation, was noted, attributable to marked elevation (70%, P < 0.04) in activity of DL-3-hydroxy-3-methyl-glutaryl-CoA reductase, the rate-limiting enzyme in cholesterol synthesis. The ratio of Acyl-CoA to cholesterol acyltransferase, the esterifying cholesterol enzyme, remained unchanged. Fe(2+)-ascorbate-mediated lipid peroxidation modifies intracellular fat absorption and may decrease enterocyte efficiency in assembling and transporting lipids during gut inflammation.  (+info)

Protective effect of phenolic antioxidants on the cytotoxicity induced by phosphatidylcholine hydroperoxide. (14/222)

Phosphatidylcholine hydroperoxides show weak but distinct toxicity toward cultured human umbilical vein endothelial cells. The protective effect of phenolic antioxidants against the cytotoxicity of phosphatidylcholine hydroperoxides was examined. Probucol depressed the toxicity most effectively among the antioxidants studied under both pretreatment and concurrent treatment conditions. alpha-Tocopherol showed a protective effect in the case of concurrent treatment. Protection by phenolic antioxidants against the cytotoxicity of phosphatidylcholine hydroperoxides seems to depend on their incorporation rate into cells, their affinity for phospholipids, their antioxidative activity, and their orientation in membranes.  (+info)

Modification of protein moiety of human low density lipoprotein by hypochlorite generates strong platelet agonist. (15/222)

Conflicting reports exist about the effects of mildly or extensively oxidized low density lipoproteins (LDLs) on the reactivity of human platelets. This platelet response is mainly caused by modification of the protein and lipid moiety, giving rise to very differently modified species with hardly predictable properties. The aim of this study was to prepare oxidized LDL with modifications essentially restricted to the protein moiety and to determine the eventual platelet responses. We treated LDL at 0 degrees C for 10 minutes with a 60- to 1000-fold molar excess of sodium hypochlorite in borate buffer in the presence of the radical scavenger butylated hydroxytoluene. Under these conditions, neither fragmentation of apolipoprotein B-100 nor formation of LDL aggregates was observed, and lipid oxidation products did not exceed the amount present in untreated LDLs. The degree of modification and the respective effects on platelet function were highly reproducible. Hypochlorite-modified LDLs act as strong platelet agonists, inducing morphological changes, dense granule release, and irreversible platelet aggregation. The evoked platelet effects are completely suppressed by inhibitors of the phosphoinositide cycle but not by EDTA or acetylsalicylic acid. Most likely, these effects are transmitted via high-affinity binding to a single class of sites, which does not recognize native or acetylated LDL. Obviously, modified lysines, and the secondary lipid modifications derived from them, are not essential for this interaction. We conclude that bioactive oxidized lipids are not directly involved in the stimulation of platelets by hypochlorite-modified LDLs.  (+info)

Role of intracellular chloride in the reversible activation of neutrophil beta 2 integrins: a lesson from TNF stimulation. (16/222)

The process of beta(2) integrin activation, which enhances the interaction of these heterodimers with ligands, plays a crucial role in the adherence-dependent neutrophilic polymorphonuclear leukocytes' (PMN) responses to TNF. Our previous observation, showing that a marked decrease of the high basal Cl(-) content (Cl(-)(i)) is an essential step in the TNF-induced activation of PMN, stimulated this study, which investigates the role of alterations of Cl(-)(i) in the activation of beta(2) integrins triggered by TNF. Here we show that TNF enhances the expression of activation-specific neoepitopes of beta(2) integrins, namely, epitope 24, a unique epitope present on all three leukocyte integrin alpha subunits, and epitope CBRM1/5, localized to the I domain on the alpha-chain of Mac-1 (CD11bCD18). Moreover, we demonstrate that the conformational changes underlying the expression of the neoepitopes are dependent on a drop in Cl(-)(i) because 1) inhibition of Cl(-)(i) decrease is invariably accompanied by inhibition of beta(2) integrin activation, 2) Cl(-)(i) decrease induced by means other than agonist stimulation, i.e., by placing PMN in Cl(-)-free buffers, activates beta(2) integrins, and 3) restoration of the original Cl(-)(i) levels is accompanied by deactivation of beta(2) integrins. We also show that Cl(-)(i) decrease is required for TNF-induced cytoplasmic alkalinization, but such a rise in pH(i) does not seem to be relevant for beta(2) integrin activation. The results of our study emphasize the role of Cl(-) as a new PMN "second messenger."  (+info)