Epoxycyclopentenone-containing oxidized phospholipids restore endothelial barrier function via Cdc42 and Rac. (49/222)

After an acute phase of inflammation or injury, restoration of the endothelial barrier is important to regain vascular integrity and to prevent edema formation. However, little is known about mediators that control restoration of endothelial barrier function. We show here that oxidized phospholipids that accumulate at sites of inflammation and tissue damage are potent regulators of endothelial barrier function. Oxygenated epoxyisoprostane-containing phospholipids, but not fragmented oxidized phospholipids, exhibited barrier-protective effects mediated by small GTPases Cdc42 and Rac and their cytoskeletal, focal adhesion, and adherens junction effector proteins. Oxidized phospholipid-induced cytoskeletal rearrangements resulted in a unique peripheral actin rim formation, which was mimicked by coexpression of constitutively active Cdc42 and Rac, and abolished by coexpression of dominant-negative Rac and Cdc42. Thus, oxidative modification of phospholipids during inflammation leads to the formation of novel regulators that may be critically involved in restoration of vascular barrier function.  (+info)

Effect of the pyridoindole antioxidant stobadine on development of experimental diabetic cataract and on lens protein oxidation in rats: comparison with vitamin E and BHT. (50/222)

PURPOSE: The aim of this study was to investigate the effect of dietary supplementation with the pyridoindole antioxidant stobadine on the development of diabetic cataract in rats. The findings were compared with the effect of the natural antioxidant vitamin E and the well known phenolic synthetic antioxidant butylated hydroxytoluene. METHODS: Streptozotocin induced diabetic male Wistars rats were fed for 18 weeks a standard diet or a diet supplemented with stobadine (0.05% w/w), vitamin E (0.1% w/w), butylated hydroxytoluene (BHT, 0.4% w/w), or a mixture of stobadine (0.05% w/w) and vitamin E (0.1% w/w). The progress of cataract was monitored biweekly by ophthalmoscopic inspection. Plasma glucose and body weight were recorded regularly. At the end of the experiment, the content of free sulfhydryl and carbonyl was determined in total lens proteins and in the stobadine group plasma levels of malondialdehyde were also measured. RESULTS: Long term treatment of diabetic animals with stobadine (STB), vitamin E, or BHT led to a marked delay in the development of advanced stages of cataract. At the end of the experiment, the visual cataract score was significantly decreased in the diabetic groups treated with stobadine or BHT, while vitamin E had no significant effect. Unexpectedly, combined treatment with STB+vitamin E advanced the progression of the higher stages of cataract, though without affecting the overall visual cataract score. Neither of the antioxidants exerted an effect on the glycemic state or body weight of the animals. Biochemical analyses of eye lens proteins showed significant diminution of sulfhydryl groups and elevation of carbonyl groups in diabetic animals in comparison to healthy controls. Dietary supplementation with any of the antioxidants studied did not influence the levels of these biomarkers significantly. Nevertheless, in diabetic animals, stobadine supplementation significantly attenuated plasma levels of malondialdehyde, an index of systemic oxidative damage. CONCLUSIONS: The results are in accordance with the postulated pro-oxidant role of chronic hyperglycemia, however, the direct oxidative free radical damage of eye lens proteins does not seem to be the key mechanism effective in the development of diabetic cataract. Sugar cataractogenesis appears to be a complex process, in which multiple mechanisms may be involved, including consequences of the overt oxidative stress in diabetes (e.g., protein modifying potential of toxic aldehydes generated as byproducts of carbohydrate autoxidation and lipid peroxidation). The ability of stobadine to attenuate lipoxidation reactions in diabetes may account, at least partly, for its observed anticataract action. Mechanisms involving reduction of mitochondrial damage by stobadine are also discussed.  (+info)

Antioxidant effects of calcium channel blockers against free radical injury in endothelial cells. Correlation of protection with preservation of glutathione levels. (51/222)

The effects of four calcium channel blockers (nicardipine, nifedipine, verapamil, and diltiazem) on free radical injury in cultured endothelial cells were studied and compared with those of butylated hydroxytoluene. When the cultured cells were exposed to a superoxide and hydroxyl radical generating system for up to 60 minutes, lipid peroxidation occurred, and cellular viability decreased by 60% at 30 minutes. Concomitantly, total cellular glutathione decreased by 40%, whereas total protein thiols changed minimally. Preincubation of the cells with each of the calcium blockers (5 and 20 microM) before free radical addition resulted in various degrees of significant protection against cell death, and losses of glutathione correlated significantly (r = 0.89, p less than 0.001). The order of efficacy was nicardipine greater than nifedipine greater than verapamil greater than diltiazem; butylated hydroxytoluene was about fourfold more potent than nicardipine. Because none of the agents affected the level of hydroxyl radicals generated in the aqueous phase, the data suggest that the protective mechanisms were mediated by their lipid antiperoxidative activities, which also prevented the glutathione decrease caused by inhibition of peroxide generation.  (+info)

Secretory pathway Ca(2+)-ATPase (SPCA1) Ca(2)+ pumps, not SERCAs, regulate complex [Ca(2+)](i) signals in human spermatozoa. (52/222)

The sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitors thapsigargin (0.1-1 microM) and cyclopiazonic acid (10 microM), failed to affect resting [Ca(2+)] in human spermatozoa. Slow progesterone-induced [Ca(2+ i)](i) oscillations in human spermatozoa, which involve cyclic emptying-refilling of an intracellular Ca(2+) store were also insensitive to these inhibitors. Non-selective doses of thapsigargin (5-30 microM, 50-300 times the saturating dose for SERCA inhibition), caused elevation of resting [Ca(2+)](i) and partial, dose-dependent disruption of oscillations. A 10-40 microM concentration of bis(2-hydroxy-3-tert-butyl-5-methyl-phenyl)methane (bis-phenol), which inhibits both thapsigargin-sensitive and -insensitive microsomal Ca(2+) ATPases, caused elevation of resting [Ca(2+)](i) and inhibition of [Ca(2+)](i) oscillations at doses consistent with inhibition of thapsigargin-resistant, microsomal ATPase and liberation of stored Ca(2+). Low doses of bis-phenol had marked effects on [Ca(2+)](i) oscillation kinetics. Application of the drug to cells previously stimulated with progesterone had effects very similar to those observed when it was applied to unstimulated cells, suggesting that the sustained Ca(2+) influx induced by progesterone is not mediated via mobilisation of Ca(2+) stores. Western blotting for human sperm proteins showed expression of secretory pathway Ca(2+) ATPase (SPCA1). Immunolocalisation studies revealed expression of SPCA1 in all cells in an area behind the nucleus, extending into the midpiece. Staining for SERCA, carried out in parallel, detected no expression with either technique. We conclude that: (1) intracellular Ca(2+) store(s) and store-dependent [Ca(2+)](i) oscillations in human spermatozoa rely primarily on a thapsigargin/cyclopiazonic acid-insensitive Ca(2+) pump, which is not a SERCA as characterised in somatic cells; (2) effects of high-dose thapsigargin on spermatozoa primarily reflect non-specific actions on non-SERCAs and; (3) secretory pathway Ca(2+) ATPases contribute at least part of this non-SERCA Ca(2+) pump activity.  (+info)

Kinetic evaluation of polyamines as radical scavengers. (53/222)

To clarify whether polyamines scavenge alkyl (carbon-centered) and peroxy (oxygen-centered) radicals, we analyzed their effects on the kinetics of polymerization of methyl methacrylate (MMA) induced by 2,2'-azobisisobutyronitrile (AIBN, a R* radical) and benzoyl peroxide (BPO, a PhCOO* radical) under nearly anaerobic conditions. Stoichiometric factors (n; number of free radicals trapped by one mole of antioxidant moiety) were determined by the induction period method. The n value for polyamines (putrescine, spermidine and spermine) was 0.1-0.7, whereas that for conventional synthetic antioxidants, BHA and BHT, was about 2. These n values were not different between the AIBN and BPO systems. The n value for polyamines declined in the order spermine > spermidine > putrescine. The K(inh)/K(p) value for polyamines (20-115) was greater than that (4-7) for BHT or BHA. Radical-scavenging activity largely depends on the stoichiometric factor of antioxidants rather than their effects on initial rate of polymerization, a rate of propagation. Polyamines may scavenge alkyl or peroxy radicals derived from polyunsaturated fatty acids in biological systems.  (+info)

Determination and confirmation of five phenolic antioxidants in foods by LC/MS and GC/MS. (54/222)

Identification and determination of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), nordihydroguaiaretic acid (NDGA), propyl gallate (PG) and tert-butylhydroquinone (TBHQ) by means of LC/MS and GC/MS were examined. These five phenolic antioxidants were detected as their pseudo-molecular ions [M-H]- by LC/MS using a Shim-pack FC-ODS column with drying gas. Moreover, BHA, BHT and TBHQ were detected based on their mass fragment ions by GC/MS. Decomposition of TBHQ, NDGA and PG during analysis could be prevented by the addition of L-ascorbic acid (AsA) to the extraction solvent. All five antioxidants were extracted from nikuman, olive oils, peanut butter, pasta sauce and chewing gum with a mixture of acetonitrile-2-propanol-ethanol (2:1:1) containing 0.1% AsA (AsA mixture), which had been cooled in a freezer and filtered. One part filtrate and 5 parts water were mixed and placed on a Mega-Bond Elut C18 cartridge, except in the case of chewing gum. Lipids in foods were removed on a C18 cartridge by washing with 5 mL of 5% acetic acid, and antioxidants were eluted with 5 mL of AsA mixture. The antioxidants spiked into nikuman, olive oil, peanut butter, pasta sauce and chewing gum were successfully identified and their concentrations determined by LC/MS, and GC/MS with good recoveries.  (+info)

Effects of treatment with butylated hydroxytoluene on the susceptibility of boar spermatozoa to cold stress and dilution. (55/222)

Boar spermatozoa acquired resistance to cold shock immediately after exposure to 2.0 mmol butylated hydroxytoluene (BHT) l-1 when Beltsville thawing solution was used as a basic diluent, as judged by motility (the proportion of motile spermatozoa) and acrosomal integrity. The concentration of BHT could be reduced to 0.2 mmol l-1 without decreasing the protective action. However, motility was altered in the presence of greater than 0.15 mmol BHT l-1. Beltsville freezing 5 (BF5) diluent was more effective than Beltsville thawing solution in protecting spermatozoa from cold shock, but addition of BHT to BF5 diluent did not affect the motility and acrosomal morphology of spermatozoa before or after cold shock. Dilution of BHT-treated spermatozoa with BF5 diluent did not restore motility and did not afford further protection against cold shock; it was detrimental to spermatozoa treated with 2 mmol BHT l-1 for greater than 15 min. Egg yolk or lecithin had a detrimental effect. When spermatozoa were treated with 0.05-0.10 mmol BHT l-1 before slow cooling to 5 degrees C, the progressive motility and acrosomal integrity were maintained better after storage for 6 days than in untreated spermatozoa.  (+info)

Beta-catenin in the fibroproliferative response to acute lung injury. (56/222)

Resolution of alveolar epithelial/capillary membrane damage after acute lung injury requires coordinated and effective tissue repair to reestablish a functional alveolar epithelial/capillary membrane barrier. We hypothesized that signaling pathways important in lung alveolar bud ontogeny are activated in the recovery and remodeling phases after profound oxidant stress lung injury in a murine model. To test this, we characterized the expression of noncanonical beta-catenin pathway proteins E-cadherin, integrin-linked kinase-1, and beta-catenin in mice undergoing normoxic recovery after exposure to butylated hydroxytoluene (BHT, ionol) and concomitant sublethal (75% O2) hyperoxia. Mice developed early acute lung injury with subsequent inflammation, collagen deposition, interstitial cellular proliferation, and lung architectural distortion. Reduced E-cadherin expression after 6 d of BHT and hyperoxia was accompanied by enhanced expression and nuclear localization of beta-catenin and increased integrin-linked kinase-1 expression during subsequent normoxic recovery. This resulted in increased expression of the cotranscriptional regulators TCF-1 and -3 and cyclin D1. Proliferation of murine lung epithelial-12 cells in vitro after 8 h of treatment with BHT quinone-methide and hyperoxia and 48 h of normoxic recovery was enhanced 2.7-fold compared with vehicle-treated control mice at the same time point. BHT/hyperoxia-exposed mice treated with the pan-caspase inhibitor z-ASP had increased acute lung injury and reduced survival despite the presence of TUNEL-positive cells, suggesting enhanced lung cell necrosis. Beta-catenin expression was reduced in z-ASP-co-treated lungs after BHT/hyperoxia. The noncanonical cadherin-beta-catenin axis is associated with fibroproliferative repair after BHT/hyperoxia exposure and may regulate epithelial proliferation and lung matrix remodeling and repair in response to lung injury.  (+info)