Phosphatidylserine-dependent adhesion of T cells to endothelial cells. (9/170)

Phosphatidylserine (PS) was exposed at the surface of human umbilical vein endothelial cells (HUVECs) and cultured cell lines by agonists that increase cytosolic Ca(2+), and factors governing the adhesion of T cells to the treated cells were investigated. Thrombin, ionophore A23187 and the Ca(2+)-ATPase inhibitor 2, 5-di-tert-butyl-1,4-benzohydroquinone each induced a PS-dependent adhesion of Jurkat T cells. A23187, which was the most effective agonist in releasing PS-bearing microvesicles, was the least effective in inducing the PS-dependent adhesion of Jurkat cells. Treatment of ECV304 and EA.hy926 cells with EGTA, followed by a return to normal medium, resulted in an influx of Ca(2+) and an increase in adhering Jurkat cells. Oxidised low-density lipoprotein induced a procoagulant response in cultured ECV304 cells and increased the number of adhering Jurkat cells, but adhesion was not inhibited by pretreating ECV304 cells with annexin V. PS was not significantly exposed on untreated Jurkat cells, as determined by flow cytometry with annexin V-FITC. However, after adhesion to thrombin-treated ECV304 cells for 10 min followed by detachment in 1 mM EDTA, there was a marked exposure of PS on the Jurkat cells. Binding of annexin V-FITC to the detached cells was inhibited by pretreating them with unlabelled annexin V. Contact with thrombin-treated ECV304 cells thus induced the exposure of PS on Jurkat cells and, as Jurkat cells were unable to adhere to thrombin-treated ECV304 cells in the presence of EGTA, the adhesion of the two cell types may involve a Ca(2+) bridge between PS on both cell surfaces. The number of T cells from normal, human peripheral blood that adhered to ECV304 cells was not increased by treating the latter with thrombin. However, findings made with several T cell lines were generally, but not completely, consistent with the possibility that adhesion to surface PS on endothelial cells may be a feature of T cells that express both CD4(+) and CD8(+) antigens. Possible implications for PS-dependent adhesion of T cells to endothelial cells in metastasis, and early in atherogenesis, are discussed.  (+info)

Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I. (10/170)

Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression.  (+info)

Molecular mechanisms of butylated hydroxylanisole-induced toxicity: induction of apoptosis through direct release of cytochrome c. (11/170)

Butylated hydroxyanisole (BHA), a commonly used food preservative, is reported to have anticarcinogenic properties in some animal models. However, the use of BHA as a chemopreventive agent against cancer in human has been challenged by the observation that BHA may exert toxic effect in some tissues of animals. Therefore, it is of great significance to understand the mechanism of BHA-induced toxicity. Here, we report that BHA induces apoptosis in freshly isolated rat hepatocytes. Treatment of hepatocytes with BHA also induced loss of mitochondrial transmembrane potential (Deltapsi(m)), cytochrome c, and activation of caspase-3, -8, and -9 but not caspase-1. Pretreatment with cyclosporin A, an agent that stabilizes mitochondrial permeability transition pore, inhibited BHA-induced loss of Deltapsi(m), cytochrome c release, caspase activation, and apoptosis. Interestingly, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone failed to prevent these mitochondrial events, although it blocked caspase activation and apoptosis. Furthermore, BHA-induced apoptosis appeared to be independent of formation of reactive intermediates, as evidenced by the lack of effects of antioxidants N-acetyl-L-cysteine and ascorbic acid. Indeed, direct incubation of BHA with isolated mitochondria triggered cytochrome c release. Thus, these results indicate that the cytotoxicity of BHA is due to the induction of apoptosis that is mediated by the direct release of cytochrome c and the subsequent activation of caspases.  (+info)

T cell lysis of murine renal cancer: multiple signaling pathways for cell death via Fas. (12/170)

Activated T cells lyse the murine renal cancer Renca. We have examined the mechanism of tumor cell lysis with the use of T cells derived from C57BL/6, BALB/c, B6.gld, and B6.Pfp-/- mice. C57BL/6 and BALB/c T cells can lyse Renca cells through the use of both granule- and Fas ligand (FasL)-mediated pathways. However, B6.gld T cells predominantly use granule-mediated killing, whereas B6.Pfp-/- T cells use FasL. The lysis of Renca by Pfp-/- T cells is only partially inhibited by the caspase inhibitor ZVAD-FMK, suggesting that caspase-independent signaling is also important for Renca cell lysis. When the reactive oxygen scavenger butylated hydroxyanisole was used alone or in combination with ZVAD-FMK a substantial reduction of Renca lysis was observed. Therefore, the caspase-independent generation of reactive oxygen intermediates in Renca after Fas triggering contributes to the lysis of these cells.  (+info)

Early events in the induction of rat hepatic UDP-glucuronosyltransferases, glutathione S-transferase, and microsomal epoxide hydrolase by 1,7-phenanthroline: comparison with oltipraz, tert-butyl-4-hydroxyanisole, and tert-butylhydroquinone. (13/170)

Several classes of compounds are able to induce a spectrum of drug-metabolizing enzymes without inducing cytochrome P450s. Examples include antioxidants such as tert-butyl-4-hydroxyanisole and its metabolite tert-butylhydroquinone, dithiolthiones such as oltipraz, and N-heterocycles such as 1,7-phenanthroline. The events associated with induction of UDP-glucuronosyltransferases (UGT), glutathione S-transferases, and microsomal epoxide hydrolase after a single oral dose of these agents have been compared. No agent significantly elevated any of these enzyme activities within 24 h, but oltipraz and 1,7-phenanthroline significantly increased glutathione S-transferase and UGT activities by 48 h. 1, 7-Phenanthroline and oltipraz showed generally similar time-course responses of drug-metabolizing enzyme mRNAs; little change from control at 6 h followed by significant and maximal increases 12 to 18 h after treatment. Maximal mRNA changes for 1,7-phenanthroline and oltipraz were of similar magnitude and clustered around 4-fold for most enzymes. With the exception of one UGT isozyme (UGT1A1), the elevations in mRNA were blocked by prior administration of actinomycin D, indicative of a transcription-dependent response. Neither tert-butyl-4-hydroxyanisole nor tert-butylhydroquinone caused a statistically significant increase in any mRNA examined at any time point.  (+info)

Effects of dietary constituents on the metabolism of chemical carcinogens. (14/170)

Dietary constituents of 2 types have been shown to affect the metabolism of chemical carcinogens by the microsomal mixed-function oxidase system. Naturally occurring inducers of increased activity of this system are present in plants. Cruciferous vegetables including Brussels sprouts, cabbage, and cauliflower are relatively potent in this regard. From these vegetables, three indoles with inducing activity have been identified. These are indole-3-acetonitrile, indole-3-carbinol, and 3,3'-diindolylmethane. A 2nd type of dietary constituent affecting the microsomal mixed-function oxidase system is added phenolic antioxidant, i.e., butylated hydroxyanisole (BHA) and butylated hydroxytoluene. Studies of the effect of BHA on metabolism of bezo(a)-pyrene by liver microsomes have been carried out. BHA feeding results in microsomal changes. The cytochrome P-450 shows altered spectral characteristics, and the aryl hydrocarbon hydroxylase system of these microsomes has an increased sensitivity to inhibition by alpha-naphthoflavone. In addition, there is a decrease in binding of metabolites of benzo(a)pyrene to DNA upon incubation of these microsomes of induction of increased mixed function oxidase activity have shown that increased levels of activity protect against administration of chemical carcinogens. BHA and butylated hydroxytoluene also have been found to exert a protective effect against chemical carcinogens. Thus the constituents of the diet could be of consequence in the neoplastic response to exposure to carcinogens in the environment.  (+info)

Arsenic trioxide-mediated cytotoxicity and apoptosis in prostate and ovarian carcinoma cell lines. (15/170)

We studied the effect of arsenic trioxide (As2O3) on prostate and ovarian carcinoma cell lines. As2O3 has been shown to be effective in leukemia, and acute promyelocytic leukemia in particular, both in vitro and in vivo. As model cell lines, we used DU145 and PC-3 for prostate cancer and MDAH 2774 for ovarian cancer. New modalities of treatment are essential in these kinds of cancers, which produce a high death toll. The 3-(4,5-dimethyl-thiazoyl-2-yl)-2,5-diphenyl-tetrazolium bromide assay was used to evaluate cytotoxicity. Flow cytometric analysis and mono-oligo nucleosome detection-based ELISA were used to determine the apoptosis. Isobologram analysis was used to evaluate synergism and/or the additive effects of As2O3 and conventional chemotherapeutic agents. We clearly demonstrated that As2O3 has significant cytotoxic effect on both prostate and ovarian carcinoma cell lines. The dose range of As2O3 in all three cell lines was approximately 10(-6) M. The mechanism underlying cytotoxicity of As2O3 was shown to be apoptosis. The experiments by butylated hydroxyanisole showed that the cytotoxic effect of As2O3 was not through superoxide generation. There was no synergism, but the additive effects of As2O3 were demonstrated with cisplatin, adriamycin, and etoposide. We strongly suggest that As2O3 alone or in combination with conventional chemotherapeutic agents be evaluated further as a new agent for the treatment of prostate and ovarian cancers.  (+info)

Effects of some sterically hindered phenols on whole-cell Ca(2+) current of guinea-pig gastric fundus smooth muscle cells. (16/170)

1. The aim of the present study was to investigate the effects of extracellular application of some sterically-hindered phenols, namely 3-t-butyl-4-hydroxyanisole (BHA), 3,5-di-t-butyl-4-hydroxyanisole (DTBHA) and the dimer of BHA, 2,2'-dihydroxy-3,3'-di-t-butyl-5,5'-dimethoxydiphenyl (DIBHA), on the whole-cell Ca(2+) current (I(Ca)) of freshly isolated smooth muscle cells from the guinea-pig gastric fundus, in the presence of a range of Ca(2+) concentrations (1 -- 5 mM) using the patch-clamp technique. The influx of Ca(2+) had characteristics of L-type I(Ca) (I(Ca(L))). 2. BHA as well as DTBHA inhibited I(Ca(L)) in a concentration-dependent manner, during depolarization to 10 mV from a holding potential of -50 mV. Bath application of BHA (50 microM) and DTBHA (30 microM) decreased I(Ca(L)) by 48.9% and 45.2%, respectively. This inhibition was only partially reversible. In contrast, DIBHA (up to 50 microM) was devoided of effects on I(Ca(L)). 3. BHA inhibition of I(Ca(L)) was voltage-dependent and inversely related to the external concentration of Ca(2+). On the other hand, DTBHA inhibition was only voltage-dependent. 4. BHA and DTBHA shifted the voltage range of the steady-state inactivation curve to more negative potentials by 8 mV at the mid-potential of the curve, without affecting the activation curve. Furthermore, BHA and DTBHA did not modify the time-course of the current decay. 5. We conclude that the inhibition of I(Ca(L)) by BHA and DTBHA is qualitatively similar to that of a Ca(2+) channel blocker and is characterized by the stabilizing effect of the inactivated state of the channel.  (+info)