EstB from Burkholderia gladioli: a novel esterase with a beta-lactamase fold reveals steric factors to discriminate between esterolytic and beta-lactam cleaving activity. (65/537)

Esterases form a diverse class of enzymes of largely unknown physiological role. Because many drugs and pesticides carry ester functions, the hydrolysis of such compounds forms at least one potential biological function. Carboxylesterases catalyze the hydrolysis of short chain aliphatic and aromatic carboxylic ester compounds. Esterases, D-alanyl-D-alanine-peptidases (DD-peptidases) and beta-lactamases can be grouped into two distinct classes of hydrolases with different folds and topologically unrelated catalytic residues, the one class comprising of esterases, the other one of beta-lactamases and DD-peptidases. The chemical reactivities of esters and beta-lactams towards hydrolysis are quite similar, which raises the question of which factors prevent esterases from displaying beta-lactamase activity and vice versa. Here we describe the crystal structure of EstB, an esterase isolated from Burkholderia gladioli. It shows the protein to belong to a novel class of esterases with homology to Penicillin binding proteins, notably DD-peptidase and class C beta-lactamases. Site-directed mutagenesis and the crystal structure of the complex with diisopropyl-fluorophosphate suggest Ser75 within the "beta-lactamase" Ser-x-x-Lys motif to act as catalytic nucleophile. Despite its structural homology to beta-lactamases, EstB shows no beta-lactamase activity. Although the nature and arrangement of active-site residues is very similar between EstB and homologous beta-lactamases, there are considerable differences in the shape of the active site tunnel. Modeling studies suggest steric factors to account for the enzyme's selectivity for ester hydrolysis versus beta-lactam cleavage.  (+info)

Molecular method to assess the diversity of Burkholderia species in environmental samples. (66/537)

In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient gel electrophoresis (DGGE), a powerful tool for studying the diversity of microbial communities, for detection and analysis of the Burkholderia diversity in soil samples. Primers specific for the genus Burkholderia were developed based on the 16S rRNA gene sequence and were evaluated in PCRs performed with genomic DNAs from Burkholderia and non-Burkholderia species as the templates. The primer system used exhibited good specificity and sensitivity for the majority of established species of the genus Burkholderia. DGGE analyses of the PCR products obtained showed that there were sufficient differences in migration behavior to distinguish the majority of the 14 Burkholderia species tested. Sequence analysis of amplicons generated with soil DNA exclusively revealed sequences affiliated with sequences of Burkholderia species, demonstrating that the PCR-DGGE method is suitable for studying the diversity of this genus in natural settings. A PCR-DGGE analysis of the Burkholderia communities in two grassland plots revealed differences in diversity mainly between bulk and rhizosphere soil samples; the communities in the latter samples produced more complex patterns.  (+info)

Nonviable Burkholderia mallei induces a mixed Th1- and Th2-like cytokine response in BALB/c mice. (67/537)

Nonviable cell preparations of Burkholderia mallei, the causative agent of glanders, were evaluated as potential vaccine candidates in a BALB/c murine model. Three different B. mallei cell preparations plus Alhydrogel were evaluated: a heat-killed preparation, an irradiation-inactivated preparation, and a preparation of a capsule-negative mutant strain which had been irradiation inactivated. BALB/c mice were vaccinated twice with the different B. mallei preparations, and spleens and sera were collected to determine their cellular and humoral immune responses. All three bacterial cell preparations had essentially the same results in two cellular immune response assays. In a splenocyte proliferation assay, the amount of cell proliferation in response to the homologous immunogen, concanavalin A, or lipopolysaccharide was similar for all the cell preparations. Also, splenocytes from the inoculated mice expressed interleukin 2 (IL-2), gamma interferon, and small amounts of IL-4 and IL-5, and more IL-10 cytokine in the presence of the homologous antigen. When the immunoglobulin subclasses from these mice were examined, they all produced higher levels of IgG1 than IgG2a subclasses. The higher ratio of IgG1 to IgG2a was not due to the amount of the immunogen or the adjuvant (Alhydrogel) used in the BALB/c mice. The cell preparations did not protect the vaccinated mice from a live challenge (>300 50% lethal doses). Our results suggest that in BALB/c mice, a mixed T-helper-cell-like response to nonviable B. mallei is obtained, as demonstrated by a Th1- and Th2-like cytokine response and a Th2-like subclass immunoglobulin response. This may be the reason for the inability of the B. mallei cells that were examined as candidate vaccines to protect the mice from a live challenge.  (+info)

Distribution of type III secretion gene clusters in Burkholderia pseudomallei, B. thailandensis and B. mallei. (68/537)

Burkholderia pseudomallei, the causative agent of melioidosis, carries a cluster of genes closely related in organisation to the type III secretion (TTS) system gene clusters of the plant pathogens Ralstonia solanacearum and Xanthomonas spp. The TTS gene cluster (TTS1) is present only in B. pseudomallei and not in avirulent B. thailandensis. Adjacent to the gene cluster encoding putative secreton structural proteins lie a number of open reading frames (ORFs) encoding putative proteins with little or no homology to known proteins, with the exception of one predicted protein with homology to Pseudomonas syringae HrpK. In both R. solanacearum and Xanthomonas spp., genes in this location encode secreted effector proteins. RT-PCR analysis indicated that TTS genes, including two of these ORFs, are expressed in broth at 37 degrees C. Analysis of genome sequence data identified a second cluster of TTS genes (TTS2) present in both B. pseudomallei and B. mallei (99% identity). However, B. mallei appears to lack the TTS1 gene cluster. PCR assays indicated that TTS2 was also present in B. thailandensis. TTS1 and TTS2 are similar in gene organisation, but nucleotide sequences are sufficiently divergent to suggest that the two TTS systems may have different roles.  (+info)

Burkholderia thailandensis E125 harbors a temperate bacteriophage specific for Burkholderia mallei. (69/537)

Burkholderia thailandensis is a nonpathogenic gram-negative bacillus that is closely related to Burkholderia mallei and Burkholderia pseudomallei. We found that B. thailandensis E125 spontaneously produced a bacteriophage, termed phiE125, which formed turbid plaques in top agar containing B. mallei ATCC 23344. We examined the host range of phiE125 and found that it formed plaques on B. mallei but not on any other bacterial species tested, including B. thailandensis and B. pseudomallei. Examination of the bacteriophage by transmission electron microscopy revealed an isometric head and a long noncontractile tail. B. mallei NCTC 120 and B. mallei DB110795 were resistant to infection with phiE125 and did not produce lipopolysaccharide (LPS) O antigen due to IS407A insertions in wbiE and wbiG, respectively. wbiE was provided in trans on a broad-host-range plasmid to B. mallei NCTC 120, and it restored LPS O-antigen production and susceptibility to phiE125. The 53,373-bp phiE125 genome contained 70 genes, an IS3 family insertion sequence (ISBt3), and an attachment site (attP) encompassing the 3' end of a proline tRNA (UGG) gene. While the overall genetic organization of the phiE125 genome was similar to lambda-like bacteriophages and prophages, it also possessed a novel cluster of putative replication and lysogeny genes. The phiE125 genome encoded an adenine and a cytosine methyltransferase, and purified bacteriophage DNA contained both N6-methyladenine and N4-methylcytosine. The results presented here demonstrate that phiE125 is a new member of the lambda supergroup of Siphoviridae that may be useful as a diagnostic tool for B. mallei.  (+info)

The principal determinants for the structure of the substrate-binding pocket are located within a central core of a biphenyl dioxygenase alpha subunit. (70/537)

Protein engineering by segment exchange was used to distinguish between regions of major and minor influence on the structure of the substrate-binding pocket of a biphenyl dioxygenase (BDO). Eight chimaeric enzyme systems were generated that each consisted of a hybrid hydroxylase alpha subunit (BphA1) containing segments from Burkholderia sp. strain LB400 and Rhodococcus globerulus P6, and of a hydroxylase beta subunit (BphA2), a ferredoxin (BphA3) and a ferredoxin reductase (BphA4) from strain LB400. All hybrid bphA1 genes were expressed at high levels. Seven of the resulting fusion subunits functionally interacted with the other polypeptides of the dioxygenase system to yield catalytically active enzymes. Changes in the regiospecificity of substrate attack, monitored by the formation of seventeen different dioxygenation products obtained from seven chlorobiphenyls, were used to monitor effects of segment exchanges on the structure of the BDO substrate-binding site. Exchanges of neither the beta subunit nor the N- and C-terminal regions of the alpha subunit exerted significant influences. All BDO regions that showed major effects on the substrate-binding pocket were located between approximately positions 165 and 395 of the alpha subunit. Within this part of the enzyme, in addition to segments identified previously, a subregion which is involved in ligation of the mononuclear iron significantly influenced the regiospecificity of substrate dioxygenation. Moreover, the results indicate that the construction of appropriate hybrid genes may be used as a general strategy to overcome problems in obtaining heterologous BDO activities in Escherichia coli or other host organisms.  (+info)

Short report: a rapid method for the differentiation of Burkholderia pseudomallei and Burkholderia thailandensis. (71/537)

A rapid method for the identification and differentiation of Burkholderia pseudomallei and Burkholderia thailandensis colonies is described. It consists of simultaneous use of 2 monoclonal antibody-based latex agglutination test systems. The anti-lipopolysaccharide test reacts with both species, whereas the anti-exopolysaccharide reacts only with B. pseudomallei. Compared with classical biochemical tests, the method is highly reproducible and accurate. It is particularly useful for the identification of the organisms in environmental specimens, which may contain both of these Burkholderia species.  (+info)

Differential expression of two catechol 1,2-dioxygenases in Burkholderia sp. strain TH2. (72/537)

Burkholderia sp. strain TH2, a 2-chlorobenzoate (2CB)-degrading bacterium, metabolizes benzoate (BA) and 2CB via catechol. Two different gene clusters for the catechol ortho-cleavage pathway (cat1 and cat2) were cloned from TH2 and analyzed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis showed that while both catechol dioxygenases (CatA1 and CatA2) were produced in BA-grown cells, CatA1 was undetectable when strain TH2 was grown on 2CB or cis,cis-muconate (CCM), an intermediate of catechol degradation. However, production of CatA1 during growth on 2CB or CCM was observed when cat2 genes were disrupted. The difference in the production of CatA1 and CatA2 was apparently due to a difference in inducer recognition by the regulators of the gene clusters. The inducer of CatA1 was found to be BA, not 2CB, by using a 2-halobenzoate dioxygenase gene (cbd) disruptant, which is incapable of transforming (chloro)benzoate. It was also found that CCM or its metabolite acts as an inducer for CatA2. When cat2 genes were disrupted, the growth rate in 2CB culture was reduced while that in BA culture was not. These results suggest that although cat2 genes are not indispensable for growth of TH2 on 2CB, they are advantageous.  (+info)