The beta2- and beta3-adrenoceptor-mediated relaxation induced by fenoterol in guinea pig taenia caecum. (9/31)

Fenoterol, a beta2-adrenoceptor selective agonist, belongs to the arylethanolamine class. To understand the receptor subtypes responsible for beta-adrenoceptor-mediated relaxation of guinea pig taenia caecum, we investigated the effect of fenoterol. Fenoterol caused concentration-dependent relaxation of the guinea pig taenia caecum. Propranolol, bupranolol and butoxamine produced shifts of the concentration-response curve for fenoterol. Schild regression analyses carried out for propranolol, butoxamine and bupranolol against fenoterol gave pA2 values of 8.41, 6.33 and 8.44, respectively. However, in the presence of 3 x 10(-4) M atenolol, 10(-4) M butoxamine and 10(-6) M phentolamine to block the beta1-, beta2- and a-adrenoceptor effects, respectively, Schild regression analysis carried out for bupranolol against fenoterol gave pA2 values of 5.80. These results suggest that the relaxant response to fenoterol in the guinea pig taenia caecum is mediated by both the beta2- and the beta3-adrenoceptors.  (+info)

beta3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor. (10/31)

OBJECTIVES: The regulation of cardiac function by catecholamines involves three populations of beta-adrenoceptor (beta-AR). beta(1)- and beta(2)-AR stimulations produce an increase in contractility and beta(3)-AR stimulation mediates a negative inotropic effect in human ventricular muscle. Because of the lack of suitable animal models, we have generated transgenic mice with cardiac-specific expression of the human beta(3)-AR (TG beta(3) mice). METHODS: TG beta(3) mice were produced by microinjection of the human beta(3)-AR under the control of the alpha myosin heavy chain promoter. Phenotypic analyses comprised beta(3)-AR mRNA and protein determinations, histological studies, electrocardiogram, contractility and cyclic nucleotide measurements. RESULTS: TG beta(3) mice presented no histological evidence of myocyte hypertrophy or fibrogenesis. In basal conditions, TG beta(3) mice were characterized by an increase in heart rate and an acceleration of twitch parameters without modification of its amplitude. beta(3)-AR agonists (CL 316243, SR 58611A) decreased contractility at low concentrations (1-100 nM). At high concentrations, the negative inotropic effect was abolished. Pretreatment with nadolol, a beta(1)/beta(2)-AR blocker, blunted the rebound in peak tension elicited by beta(3)-AR agonists suggesting a non-specific action of these compounds on beta(1)- and beta(2)-AR. The involvement of beta(3)-AR in the negative inotropic effect was confirmed by the pretreatment with bupranolol, a non-selective beta-AR antagonist, which fully abolished the effects of SR 58611A. The negative inotropic effect was associated with an increase in intracellular cGMP level. CONCLUSIONS: We conclude that cardiac overexpression of beta(3)-AR in mice reproduces ex vivo the negative inotropic effects obtained with beta(3)-AR stimulation in human ventricular tissues.  (+info)

Atypical cardiostimulant beta-adrenoceptor in the rat heart: stereoselective antagonism by bupranolol but lack of effect by some bupranolol analogues. (11/31)

1. Atypical beta-adrenoceptors resistant to propranolol, but blocked by bupranolol, increase contractile force and/or frequency of the heart in humans and rats. We compared the potencies of the enantiomers of bupranolol and examined the possible effects of seven bupranolol analogues including bevantolol (BEV) at this receptor in pithed and vagotomized rats. 2. CGP 12177, an agonist of the atypical beta-adrenoceptor, increased heart rate dose-dependently. Its dose-response curve was shifted to the right by S-(-)-bupranolol 10 micro mol kg(-1) by a factor of 8.4, but not affected by the same dose of R-(+)-bupranolol. 3. Desmethylbupranolol and compounds BK-21, BK-22, BK-23 and BK-25 also increased heart rate dose-dependently. The beta(1)-adrenoceptor antagonist CGP 20712 given in combination with the beta(2)-adrenoceptor antagonist ICI 118,551 (0.1 micro mol kg(-1) each) reduced the positive chronotropic action of the five bupranolol analogues without affecting that of CGP 12177. The potencies of the bupranolol analogues to increase heart rate were correlated (r=0.91, P<0.05) with their affinities for beta(1)-adrenoceptor binding sites in rat brain cortex membranes labelled with [(3)H]CGP 12177 (in the presence of ICI 118,551). 4. BK-26 and BEV, 10 micro mol kg(-1) each, had only minor effects on heart rate by themselves and did not antagonize the effect of CGP 12177. However, at 1 micro mol kg(-1), they antagonized the increase in heart rate elicited by the beta(1)-adrenoceptor agonist prenalterol. 5. In conclusion, bupranolol is a stereoselective antagonist at the atypical cardiostimulant beta-adrenoceptor. The effects of the bupranolol analogues are related to the activation or blockade of beta(1)-adrenoceptors, but not of atypical beta-adrenoceptors.  (+info)

Role of alpha-adrenergic receptors in the effect of the beta-adrenergic receptor ligands, CGP 12177, bupranolol, and SR 59230A, on the contraction of rat intrapulmonary artery. (12/31)

This study investigates the effect of the aryloxypropanolamines 4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-o ne (CGP 12177), bupranolol, and 3-(2-ethylphenoxy)-1[(1S)-1,2,3,4-tetrahydronaphth-1-ylamino]-(2S)-2-propanol oxalate (SR 59230A) [commonly used as beta(3)- and/or atypical beta-adrenergic receptors (beta-AR) ligands] on the contractile function of rat intralobar pulmonary artery. Affinities of beta-AR ligands for alpha(1)-adrenergic receptors (alpha(1)-AR) were also evaluated using [(3)H]prazosin binding competition experiments performed in rat cortical membranes. In intralobar pulmonary artery, CGP 12177 did not modify the basal tone, but antagonized the contraction induced by the alpha(1)-AR agonist phenylephrine (PHE). In arteries precontracted with PHE, CGP 12177 elicited relaxation, whereas in those precontracted with prostaglandin F(2alpha) (PGF(2alpha)), it further enhanced contraction. CGP 12177 induced an increase in intracellular calcium concentration in pressurized arteries loaded with Fura PE-3 and precontracted with PGF(2alpha). In PGF(2alpha) precontracted arteries, phentolamine (an alpha-AR antagonist) and phenoxybenzamine (an irreversible alpha-AR antagonist) antagonized the contractile responses to PHE and CGP 12177. Both responses were also decreased by bupranolol and SR 59230A. Specific [(3)H]prazosin binding was displaced by CGP 12177, bupranolol, and SR 59230A with pK(i) values of 5.2, 5.7, and 6.6, respectively. In contrast, (+/-)-(R*,R*)-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acet ic acid sodium (BRL 37344) and disodium 5-[(2R)-2-([(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino)propyl]-1,3-benzodioxole -2,2-dicarboxylate (CL 316243) (nonaryloxypropanolamines beta(3)-AR agonists) displayed very low affinity for [(3)H]prazosin binding sites (pK(i) values below 4). These data suggest that CGP 12177 exhibits partial agonist properties for alpha(1)-AR in rat pulmonary artery. They also show that bupranolol and SR 59230A exert an alpha(1)-AR antagonist effect. As a consequence, these aryloxypropanolamine compounds should be used with caution when investigating the role of beta(3)- and atypical beta-AR in the regulation of vascular tone.  (+info)

ALpha1-adrenoceptor antagonist properties of CGP 12177A and other beta-adrenoceptor ligands: evidence against beta(3)- or atypical beta-adrenoceptors in rat aorta. (13/31)

1. The alpha(1)-adrenoceptor antagonist properties of the beta-adrenoceptor nonconventional partial agonist, CGP 12177A, was investigated in functional assays in rat aorta and in radioligand binding assays in rat cerebral cortical membranes. In addition, binding affinities of other beta-adrenoceptor ligands were measured to investigate any correlation between alpha(1)-adrenoceptor affinity and relaxant potency in phenylephrine-constricted rings. 2. In functional studies, CGP 12177A produced parallel rightward shifts of the phenylephrine CRC with no reduction in the maximum responses. Schild regression analysis gave a straight line with a slope of 0.95 (95% CL: 0.87-1.04), suggesting reversible competitive antagonism, and gave a pK(B) value of 5.26. In contrast, CGP 12177A (+info)

Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. (14/31)

BACKGROUND: Coronary vessel tone is modulated in part by beta-adrenergic relaxation. However, the implication of specific beta-adrenoceptor subtypes and their downstream vasorelaxing mechanism(s) in human coronary resistance arteries is poorly defined. beta3-Adrenoceptors were recently shown to vasodilate animal vessels and are expressed in human hearts. METHODS AND RESULTS: We examined the expression and functional role of beta3-adrenoceptors in human coronary microarteries and their coupling to vasodilating nitric oxide (NO) and/or hyperpolarization mechanisms. The expression of beta3-adrenoceptor mRNA and protein was demonstrated in extracts of human coronary microarteries. Immunohistochemical analysis revealed their exclusive localization in the endothelium, with no staining of vascular smooth muscle. In contractility experiments in which videomicroscopy was used, the nonspecific beta-agonist isoproterenol and the beta3-preferential agonist BRL37344 evoked an approximately 50% relaxation of endothelin-1-preconstricted human coronary microarteries. Relaxations were blocked by the beta1/beta2/beta3-adrenoceptor antagonist bupranolol but were insensitive to the beta1/beta2-adrenoceptor antagonist nadolol, confirming a beta3-adrenoceptor-mediated pathway. Relaxation in response to BRL37344 was absent in human coronary microarteries devoid of functional endothelium. When human coronary microarteries were precontracted with KCl (thereby preventing vessel hyperpolarization), the relaxation to BRL37344 was reduced to 15.5% and totally abrogated by the NO synthase inhibitor L-omega-nitroarginine, confirming the participation of a NO synthase-mediated relaxation. The NO synthase-independent relaxation was completely inhibited by the Ca2+-activated K+ channel inhibitors apamin and charybdotoxin, consistent with an additional endothelium-derived hyperpolarizing factor-like response. Accordingly, membrane potential recordings demonstrated vessel hyperpolarization in response to beta3-adrenoceptor stimulation. CONCLUSIONS: Beta3-adrenoceptors are expressed in the endothelium of human coronary resistance arteries and mediate adrenergic vasodilatation through both NO and vessel hyperpolarization.  (+info)

Inconsistent role of nitric oxide on lipolysis in isolated rat adipocytes. (15/31)

Though two isoforms of nitric oxide synthase, iNOS and eNOS, were reported in adipocytes, the role of NO in adipose tissue is still ambiguous. The aims of the present study were 1) to follow the effect of bacterial lipopolysaccharide (LPS), on 24 h-lipolysis in rat epididymal adipocyte culture in relation to iNOS stimulation; 2) to compare LPS-induced NO effects with exogenously NO, delivered as S-nitroso-N-acetylpenicillamine (SNAP), and 3) to examine the possible role of NO signaling agonist in lipolysis mediated by the beta(3)-adrenoreceptor agonist. Lipolysis was measured by glycerol and free fatty acid (FFA) production. The medium nitrite levels were used for the indirect estimation of NOS expression. Adipocyte mitochondrial function was assessed by the MTT test. LPS produced a concentration-dependent increase of NO with a decrease of viability at the highest dose. However, LPS did not affect lipolysis. SNAP did not exhibit significant changes in glycerol, FFA or MTT. BRL-37344 and db-cAMP significantly increased nitrite, glycerol and FFA levels. There was a positive correlation between glycerol release and nitrite production. Moreover, BRL-37344 significantly reduced mitochondrial functions. The pretreatment with bupranolol, beta(3)-antagonist, restored all parameters affected by BRL-37344. These results support a concept that NO fulfils multifaceted role of stimulating lipolysis under physiological conditions (beta-agonistic effect) and modulating the same processes during inflammatory (LPS) processes.  (+info)

Modulation of Ca2+ transients and contractile properties by beta-adrenoceptor stimulation in ferret ventricular muscles. (16/31)

1. The mechanism of modulation of Ca2+ transients and contraction by beta-adrenoceptor stimulation was studied in ferret ventricular muscles using aequorin to measure intracellular Ca2+. 2. Peaks of tension and light transients were increased by isoprenaline (10(-9) - 5 x 10(-7) M) which also abbreviated their time courses. 3. Time-to-peak tension was significantly shortened by 5 x 10(-9) M-isoprenaline and time-to-peak light was abbreviated by 10(-9) M-isoprenaline. 4. The time for the light to decay was shortened at 10(-9) M-isoprenaline. However, a higher concentration of isoprenaline (10(-8) M) was required for significant shortening of the half-relaxation time (TR50). 5. When isoprenaline was removed and beta-blocker (bupranolol, 1 microM) was applied, the time course of the light transients recovered but the time course of relaxation did not recover. 6. The relationship between [Ca2+]i and tension in tetanic contraction produced in the presence of ryanodine (5 microM) was shifted to the right by isoprenaline (10(-8) M). This was recovered by the replacement of isoprenaline with bupranolol (1 microM). 7. Isoprenaline (10(-7) M) added to the solution containing 20 mM [Ca2+]O and Bay K 8644 (1 microM), which produced maximal tension, caused a large light signal and enhancement of the initial phasic tension in tetanic contraction. However, the replacement of isoprenaline with bupranolol after immersing the preparation in 20 mM [Ca2+]O solution with Bay K 8644 and isoprenaline, did not significantly change the tension level, although the light signal decreased. Similar results were obtained in the ventricular muscle of young rats. 8. These results suggest that the dose dependence of modulation of the contractile element and sarcoplasmic reticulum (SR) by beta-adrenoceptor stimulation differs, and that additional factors, other than the faster Ca2+ uptake by SR and the decrease in Ca2+ sensitivity of the contractile element, might be involved in the shortening of the half-relaxation time by beta-adrenoceptor stimulation. In addition, beta-adrenoceptor stimulation does not produce a marked change in the maximal tension level.  (+info)