The non-phospholipase A2 subunit of beta-bungarotoxin plays an important role in the phospholipase A2-independent neurotoxic effect: characterization of three isotoxins with a common phospholipase A2 subunit. (33/40)

Three isotoxins (SP I-III) of the beta-bungarotoxin family were purified to homogeneity via a series of isolation procedures including a final step of h.p.l.c. on an SP column washed with a linear gradient of 0.2-0.6 M sodium acetate at pH 7.4. Their proportions varied greatly with the batch of venom. Each isotoxin was demonstrated by SDS/PAGE to contain a phospholipase A2 subunit and a non-phospholipase A2 subunit. The three proteins were reductively alkylated with 4-vinylpyridine and the alkylated derivatives of the two subunits of each isotoxin were separated. N-Terminal sequence analysis of the alkylated derivatives revealed that the three isotoxins probably share a common phospholipase A2 subunit but differ in their non-phospholipase A2 subunits. The non-phospholipase A2 subunits of SP II and SP III were identical with those of beta 2- and beta 1-toxin respectively, except that there was an additional valine inserted between Thr-18 and Val-19 in beta 2-toxin and Pro-18 and Val-19 in beta 1-toxin. The non-phospholipase A2 subunit of SP I differed greatly from that of SP III but was almost identical with that of SP II, except that Lys-14 and Ala-29 in SP II were replaced by Arg-14 and Glu-29 in SP I. Analysis of the effect of CaCl2 on protein fluorescence showed the existence of a low- and a high-affinity site on the different domains of each isotoxin for Ca2+ binding. The three isotoxins showed no great difference in their ability to bind Ca2+ on both the high- and low-affinity site. They had slightly different phospholipase A2 activities but differed to a great extent with respect to their neurotoxic effects. LD50 values increased in the order SP I > SP II > SP III. In contrast, the ability to inhibit the indirectly evoked contraction of chick biventer cervicis muscle was in the order SP III > SP II > SP I.  (+info)

Cloning and expression of acetylcholinesterase from Bungarus fasciatus venom. A new type of cooh-terminal domain; involvement of a positively charged residue in the peripheral site. (34/40)

As deduced from cDNA clones, the catalytic domain of Bungarus fasciatus venom acetylcholinesterase (AChE) is highly homologous to those of other AChEs. It is, however, associated with a short hydrophilic carboxyl-terminal region, containing no cysteine, that bears no resemblance to the alternative COOH-terminal peptides of the GPI-anchored molecules (H) or of other homomeric or heteromeric tailed molecules (T). Expression of complete and truncated AChE in COS cells showed that active hydrophilic monomers are produced and secreted in all cases, and that cleavage of a very basic 8-residue carboxyl-terminal fragment occurs upon secretion. The COS cells produced Bungarus AChE about 30 times more efficiently than an equivalent secreted monomeric rat AChE. The recombinant Bungarus AChE, like the natural venom enzyme, showed a distinctive ladder pattern in nondenaturing electrophoresis, probably reflecting a variation in the number of sialic acids. By mutagenesis, we showed that two differences (methionine instead of tyrosine at position 70; lysine instead of aspartate or glutamate at position 285) explain the low sensitivity of Bungarus AChE to peripheral site inhibitors, compared to the Torpedo or mammalian AChEs. These results illustrate the importance of both the aromatic and the charged residues, and the fact that peripheral site ligands (propidium, gallamine, D-tubocurarine, and fasciculin 2) interact with diverse subsets of residues.  (+info)

Acetylcholinesterase from Bungarus venom: a monomeric species. (35/40)

The venom of Bungarus fasciatus, an Elapidae snake, contains a high level of AChE activity. Partial peptide sequences show that it is closely homologous to other AChEs. Bungarus venom AChE is a non-amphiphilic monomeric species, a molecular form of AChE which has not been previously found in significant levels in other tissues. The composition of carbohydrates suggests the presence of N-glycans of the 'complex' and 'hybrid' types. Ion exchange chromatography, isoelectric focusing and electrophoresis in non-denaturing and denaturing conditions reveal a complex microheterogeneity of this enzyme, which is partly related to its glycosylation.  (+info)

Electrooptical measurements demonstrate a large permanent dipole moment associated with acetylcholinesterase. (36/40)

Acetylcholinesterase (AChE) from krait (Bungarus fasciatus) venom is a soluble, nonamphiphilic monomer of 72 kDa. This snake venom AChE has been analyzed by measurements of the stationary and the transient electric dichroism at different field strengths. The stationary values of the dichroism are consistent with the orientation function for permanent dipoles and are not consistent with the orientation function for induced dipoles. The permanent dipole moment obtained by least-squares fits for a buffer containing 5 mM MES is 1000 D, after correction for the internal directing field, assuming a spherical shape of the protein. The dipole moment decreases with increasing buffer concentration to 880 D at 10 mM MES and 770 D at 20 mM MES. The dichroism decay time constant is 90 ns (+/- 10%) which is clearly larger than the value expected from the size/shape of the protein and indicates contributions from sugar residues attached to the protein. The dichroism rise times observed at low field strengths are larger than the decay times and, thus, support the assignment of a permanent dipole moment, although it has not been possible to approach the limit where the energy of the dipole in the electric field is sufficiently low compared to kT. The experimental value of the permanent dipole moment is similar to that calculated for a model structure of Bungarus fasciatus AChE, which has been constructed from its amino and acid sequence, in analogy to the crystal structure of AChE from Torpedo californica.  (+info)

Expression and processing of vertebrate acetylcholinesterase in the yeast Pichia pastoris. (37/40)

In the methylotrophic yeast Pichia pastoris, we expressed the rat acetylcholinesterase H and T subunits (AChEH and AChET respectively), as well as truncated subunits from rat (W553stop or AChETDelta, from which most of the T-peptide was removed) and from Bungarus (V536stop, or AChENAT, or AChEDelta, reduced to the catalytic domain). We show that AChEH and AChET subunits are processed into the same molecular forms as in vivo or in transfected mammalian cells, but that lytic processes converting amphiphilic forms into non-amphiphilic derivatives appear to be more active in yeast. The production of glycophosphatidylinositol (GPI)-anchored molecules (dimers, with a small proportion of monomers) demonstrates that P. pastoris can correctly process a mammalian C-terminal GPI-addition signal. Truncated rat and Bungarus AChE molecules, which exclusively generated non-amphiphilic monomers, were released more efficiently and thus produced more AChE activity. In the hope of increasing the production of AChE, we replaced the endogenous signal peptide by yeast prepeptides, with or without a propeptide. We found that the presence of a propeptide, which does not exist in AChE, does not prevent the proper folding of the enzyme, and that it may either increase or decrease the yield of secreted AChE, depending on the signal peptide. Surprisingly, the highest yield was obtained with the endogenous signal peptide. For all combinations, the yield was 2-3 times higher for Bungarus than for rat AChE, probably reflecting differences in the folding efficiency or stability of the polypeptides. The Michaelis constant (Km), the constant of inhibition by excess substrate (Kss) and the catalytic constant (kcat) values of the recombinant AChEs obtained both in P. pastoris and in COS cells, were essentially identical with those of the corresponding natural enzymes, and the Ki values of active-site and peripheral-site inhibitors (edrophonium, decamethonium, propidium) were similar.  (+info)

Identification of a novel type of alternatively spliced exon from the acetylcholinesterase gene of Bungarus fasciatus. Molecular forms of acetylcholinesterase in the snake liver and muscle. (38/40)

The venom of the snake Bungarus fasciatus contains a hydrophilic, monomeric species of acetylcholinesterase (AChE), characterized by a C-terminal region that does not resemble the alternative T- or H-peptides. Here, we show that the snake contains a single gene for AChE, possessing a novel alternative exon (S) that encodes the C-terminal region of the venom enzyme, located downstream of the T exon. Alternative splicing generates S mRNA in the venom gland and S and T mRNAs in muscle and liver. We found no evidence for the presence of an H exon between the last common "catalytic" exon and the T exon, where H exons are located in Torpedo and in mammals. Moreover, COS cells that were transfected with AChE expression vectors containing the T exon with or without the preceding genomic region produced exclusively AChET subunits. In the snake tissues, we could not detect any glycophosphatidylinositol-anchored AChE form that would have derived from H subunits. In the liver, the cholinesterase activity comprises both AChE and butyrylcholinesterase components; butyrylcholinesterase corresponds essentially to nonamphiphilic tetramers and AChE to nonamphiphilic monomers (G1na). In muscle, AChE is largely predominant: it consists of globular forms (G1a and G4a) and trace amounts of asymmetric forms (A8 and A12), which derive from AChET subunits. Thus, the Bungarus AChE gene possesses alternatively spliced T and S exons but no H exon; the absence of an H exon may be a common feature of AChE genes in reptiles and birds.  (+info)

Cloning and functional expression of B chains of beta-bungarotoxins from Bungarus multicinctus (Taiwan banded krait). (39/40)

The cDNA species encoding the B chains (B1 and B2) of beta-bungarotoxins (beta-Bgt) were constructed from the cellular RNA isolated from the venom glands of Bungarus multicinctus (Taiwan banded krait). The deduced amino acid sequences of the B chains were different from those determined previously by a protein sequencing technique. One additional Arg residue is inserted between Val-19 and Arg-20 of the B1 chain. Similarly the insertion of one additional Val residue between Val-19 and Arg-20 of the B2 chain is noted. Thus the B chains should comprise 61 amino acid residues. Moreover, the residues at positions 44-46 are Gly-Asn-His, in contrast with a previous result showing the sequence His-Gly-Asn. Instead of Asp, the residues at positions 41 and 43 are Asn. The B chain was subcloned into the expression vector pET-32a(+) and transformed into Escherichia coli strain BL21(DE3). The recombinant B chain was expressed as a fusion protein and purified on a His-Bind resin column. The yield of affinity-purified fusion protein was increased markedly by replacing Cys-55 of the B chain with Ser. However, the isolated B(C55S) chain became insoluble in aqueous solution after removal of the fused protein from the affinity-purified product, suggesting that protein-protein interactions might be crucial for stabilizing the structure of the B chain. The B(C55S) chain fusion protein showed activity in blocking the voltage-dependent K+ channel, but did not inhibit the binding of beta-Bgt to synaptosomal membranes. These results, together with the finding that modification of His-48 of the A chain of beta-Bgt caused a marked decrease in the ability to bind toxin to its acceptor proteins, suggest that the B chain is involved in the K+ channel blocking action observed with beta-Bgt, and that the binding of beta-Bgt to neuronal receptors is not heavily dependent on the B chain.  (+info)

Genetic characterization of the mRNAs encoding alpha-bungarotoxin: isoforms and RNA editing in Bungarus multicinctus gland cells. (40/40)

The mRNA encoding alpha-bungarotoxin (alpha-Butx) was prepared from the venom glands of Bungarus multicinctus by Cap-finder cDNA synthesis. The sequences of the 3'- and 5'-flanking regions including a signal peptide of alpha-Butx were almost identical with those of Elapidae and Hydrophiidae toxins, suggesting that they may have the same origin. Sixteen polymorphic mRNA sequences of alpha-Butx were detected from B.multicinctus gland cells. Analysis of the genomic DNA of alpha-Butx indicated that the polymorphic mRNA originated from one DNA sequence. Most of the mutations in alpha-Butx mRNA were silent and the hot-spot variations occurred at 78, 107, 129, 198 and 201 nt in alpha-Butx mRNA. Ten distinct protein sequences of alpha-Butx could be deduced from the polymorphic mRNA and one of the isoforms has already been isolated. Since alpha-Butx DNA is a single copy in the genome, the RNA polymorphism might result from post-transcriptional editing. These results indicate that the authentic alpha-Butx is in fact derived from edited mRNAs. RNA editing may contribute a common mechanism toward the diversity of alpha-neurotoxins in snake glands.  (+info)