The major receptor for C-reactive protein on leukocytes is fcgamma receptor II. (33/2312)

C-reactive protein (CRP) is an acute phase serum protein that shares several functions with immunoglobulin (Ig)G including complement activation and binding to receptors on monocytes and neutrophils. The identity of the receptor for CRP has been the target of extensive research. We previously determined that CRP binds to the high affinity receptor for IgG, FcgammaRI (CD64). However, this interaction could not account for the majority of binding of CRP to neutrophils or monocytic cells. We now determine that CRP also interacts with FcgammaRIIa (CD32), the low affinity receptor for IgG on monocytes and neutrophils. COS-7 cells were transfected with a construct containing the human FcgammaRIIA cDNA. CRP binding and the presence of CD32 were detected by mAb and analyzed by two-color flow cytometry. Cells expressing CD32 bound CRP in a dose-dependent and saturable manner consistent with receptor binding. CRP bound to transfectants and K-562 cells with similar kinetics, and in both cases binding was completely inhibited by aggregated IgG. On monocytic cell lines, treatment with Bt(2)cAMP increased FcgammaRII expression and enhanced CRP binding. CRP also specifically precipitated FcgammaRI and FcgammaRII from the monocytic cell line, THP-1. It is suggested that the major receptor for CRP on phagocytic cells is FcgammaRII.  (+info)

Inducible expression and regulation of the alpha 1-acid glycoprotein gene by alveolar macrophages: prostaglandin E2 and cyclic AMP act as new positive stimuli. (34/2312)

We have reported that alpha 1-acid glycoprotein (AGP) gene expression was induced in lung tissue and in alveolar type II cells during pulmonary inflammatory processes, suggesting that local production of this immunomodulatory protein might contribute to the modulation of inflammation within the alveolar space. Because AGP may also be secreted by other cell types in the alveolus, we have investigated the expression and the regulation of the AGP gene in human and rat alveolar macrophages. Spontaneous AGP secretion by alveolar macrophages was increased 4-fold in patients with interstitial lung involvement compared with that in controls. In the rat, immunoprecipitation of [35S]methionine-labeled cell lysates showed that alveolar macrophages synthesize and secrete AGP. IL-1 beta had no effect by itself, but potentiated the dexamethasone-induced increase in AGP production. RNase protection assay demonstrated that AGP mRNA, undetectable in unstimulated cells, was induced by dexamethasone. Conditioned medium from LPS-stimulated macrophages as well as IL-1 beta had no effect by themselves, but potentiated the dexamethasone-induced increase in AGP mRNA levels. In addition to cytokines, PGE2 as well as dibutyryl cAMP increased AGP mRNA levels in the presence of dexamethasone. When AGP expression in other cells of the monocyte/macrophage lineage was examined, weak and no AGP production by human blood monocytes and by rat peritoneal macrophages, respectively, were observed. Our data showed that 1) AGP expression is inducible specifically in alveolar macrophages in vivo and in vitro; and 2) PGE2 and cAMP act as new positive stimuli for AGP gene expression.  (+info)

Modulation of apoptosis of proliferating and differentiating HL-60 cells by protein kinase inhibitors: suppression of PKC or PKA differently affects cell differentiation and apoptosis. (35/2312)

The relationship between RA- or dbcaMP-mediated differentiation and subsequent apoptosis in HL-60 cells was assessed by modulating the levels of differentiation suppressing the activity of PKC and PKA with calphostin C or GF 109203X and H89, respectively. Results demonstrated that (1) RA and dbcAMP caused a dose-dependent increase in apoptosis concomitant with progressive differentiation; (2) the suppression of PKC activity resulted in an increase of apoptosis unrelated to the modulated levels of differentiation; (3) the inhibition of PKA decreased granulocytic differentiation, but did not significantly affect apoptosis; (4) the pretreatment of cells with dbcAMP strongly potentiated RA-mediated differentiation without apparent changes in apoptosis; (5) cell differentiation and apoptosis were associated with cell cycle arrest in G1 phase and G2/M phases, respectively. Our findings indicate that the functional maturity of differentiating cells is not directly related to the apoptotic programme, and suggest that induction of cell differentiation and apoptosis are regulated by separate mechanisms in which PKC and PKA are involved.  (+info)

Maitotoxin-induced nerve growth factor production accompanied by the activation of a voltage-insensitive Ca2+ channel in C6-BU-1 glioma cells. (36/2312)

1. The aim of the present study was to determine the effects of maitotoxin on nerve growth factor production and the Ca2+ influx in clonal rat glioma cells (C6-BU-1). 2. Maitotoxin (1 - 10 ng ml-1) induced a profound increase in 45Ca2+ influx in an extracellular Ca2+-dependent manner. However, high KCl had no effect at all. These effects were supported by the results from the analysis of intracellular Ca2+ concentration using fura 2. 3. The maitotoxin-induced 45Ca2+ influx was inhibited by inorganic Ca2+ antagonists, such as Mg2+, Mn2+ and Co2+. The inhibitory effect of Co2+ was antagonized by increasing the extracellular Ca2+ concentrations. 4. Maitotoxin (3 ng ml-1) as well as A-23187 (1microM) and dibutyryl cyclic AMP (0.5 mM) caused an acceleration of nerve growth factor (NGF) production in C6-BU-1 cells, as determined by NGF enzyme immunoassay. 5. Reverse transcription polymerase chain reaction (RT - PCR) analysis showed that maitotoxin (10 ng ml-1) enhanced the expression of NGF mRNA, which was abolished by the removal of extracellular Ca2+. A-23187 also accelerated its expression. 6. These results suggest that maitotoxin activates a voltage-insensitive Ca2+ channel and accelerates NGF production mediated through a Ca2+ signalling pathway in C6-BU-1 glioma cells.  (+info)

Inhibitory effect of thyrotropic hormone on apoptosis induced by actinomycin D in a functioning rat thyroid cell line. (37/2312)

Apoptosis appears to play important roles in physiological and pathological processes in the endocrine system including the thyroid, but little is known about the regulation of apoptosis in the thyroid. The functioning rat thyroid cell line (FRTL-5), a cloned cell line of differentiated thyroid cells, hardly undergoes apoptosis. In this study we examined the factors which prevent FRTL-5 cells from undergoing apoptosis. After culturing FRTL-5 cells in medium with and without TSH, actinomycin D (AMD) or cycloheximide (CHX) was added. CHX did not induce apoptosis. AMD induced apoptosis in FRTL-5 cells cultured in medium lacking TSH, as confirmed by the presence of DNA fragmentation, together with nuclear fragmentation and condensation, but AMD did not induce apoptosis in FRTL-5 cells cultured in the presence of TSH. Furthermore, the fact that AMD did not induce apoptosis in FRTL-5 cells cultured with dibutyryl cyclic AMP (Bt2cAMP), or forskolin suggests that TSH has an inhibitory effect on apoptosis in FRTL-5 cells via the TSH-cAMP pathway.  (+info)

Synergistic enhancement by 12-O-tetradecanoylphorbol-13-acetate and dibutyryl cAMP of 1alpha,25-dihydroxyvitamin D3 action in human promyelocytic leukemic HL-60 cells. (38/2312)

We have reported that dibutyryl cAMP (dbcAMP), an activator of cAMP-dependent protein kinase (PKA), potentiated the effects of 1alpha,25-dihydroxyvitamin D3(1,25-(OH)2D3)-induced 24-hydroxylation activity in HL-60 cells by increasing 1,25-(OH)2D3 receptor (VDR). The present study demonstrated that 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent phorbol ester, also potentiated the effect of 1,25-(OH)2D3 on HL-60 cells and that TPA and dbcAMP acted in a synergistic manner to enhance the effect of 1,25-(OH)2D3. It is interesting that TPA induced 24-hydroxylation activity far more efficiently than dbcAMP, in addition to their effects in increasing VDR. TPA increased basal levels of c-fos mRNA to the maximum by 1 h after the treatment, whereas dbcAMP failed to affect c-fos gene expression. Together with the previous data indicating the presence of AP-1-like sequence in the promoter of 24-hydroxylase gene, it was suggested that TPA potentiated the effect of 1,25-(OH)2D3 through an activation of c-fos gene expression. This notion was further supported by the data showing that TPA and dbcAMP also acted in a synergistic manner to activate c-fos gene expression. Neither TPA nor dbcAMP affected c-jun early response gene in the HL-60 clone used in the present study. The present study suggested that the activation of early c-fos response gene by TPA might be another mechanism to enhance the effect of 1,25-(OH)2D3, besides up-regulation of VDR.  (+info)

Transforming growth factor-beta regulates Kit ligand expression in rat ovarian surface epithelial cells. (39/2312)

In preparation for ovulation, paracrine communication between the preovulatory follicle and overlying theca/stromal cells and ovarian surface epithelium (OSE) must take place to facilitate the degradative and apoptotic events associated with ovulation. Kit tyrosine kinase receptors and their ligand, kit ligand (KL) are expressed within ovarian follicles, and ligand-induced receptor activation appears to account for some of the cell - cell interactions important for oocyte development. We investigated the expression of Kit receptors and KL in OSE cells and the possibility that modulation of their expression could affect OSE cell activity. KL mRNA and protein were detected in the OSE cell layer of rat ovaries, and primary cultures of rat OSE as well as the immortalized rat OSE cell line, ROSE 199, expressed KL, but not Kit receptors. Both primary and immortalized OSE cells preferentially expressed KL-1, rather than KL-2, transcripts, suggesting that these cells produce predominantly the soluble form of KL. Activation of the cAMP signalling pathway using dibutyryl cAMP decreased proliferation of ROSE 199 cells and elicited a threefold increase in KL expression. TGF-beta similarly inhibited ROSE 199 cell proliferation, but strongly inhibited dibutyryl cAMP-induced KL expression, indicating that changes in KL expression were not directly associated with OSE cell proliferation. The expression of mostly soluble KL in the surface epithelium suggests that this cytokine may be acting in a paracrine fashion, perhaps interacting with nearby Kit receptor-bearing theca cells.  (+info)

Restoration of ocular dominance plasticity mediated by adenosine 3',5'-monophosphate in adult visual cortex. (40/2312)

Noradrenaline (NA)-stimulated beta-adrenoreceptors activate adenylate cyclase via excitatory G-proteins (Gs). Activated adenylate cyclase in turn promotes the production of cAMP. Critical roles of cAMP-dependent protein kinase A (PKA) in divergent cellular functions have been shown, including memory, learning and neural plasticity. Ocular dominance plasticity (ODP) is strongly expressed in early postnatal life and usually absent in the mature visual cortex. Here, we asked whether the activation of cAMP-dependent PKA could restore ODP to the aplastic visual cortex of adult cats. Concurrent with brief monocular deprivation, each of the following cAMP-related drugs was directly and continuously infused in the adult visual cortex: cholera toxin (a Gs-protein stimulant), forskolin (a Gs-protein-independent activator of adenylate cyclase) and dibutyryl cAMP (a cAMP analogue). We found that the ocular dominance distribution became W-shaped, the proportion of binocular cells being significantly lower than that in respective controls. We concluded that the activation of cAMP cascades rapidly restores ODP to the adult visual cortex, though moderately. The finding further extends the original hypothesis that the NA-beta-adrenoreceptors system is a neurochemical mechanism of cortical plasticity.  (+info)