Plasmids derived from Gifsy-1/Gifsy-2, lambdoid prophages contributing to the virulence of Salmonella enterica serovar Typhimurium: implications for the evolution of replication initiation proteins of lambdoid phages and enterobacteria. (57/120)

Gifsy-1 and Gifsy-2 are lambdoid prophages which contribute to the virulence of Salmonella enterica serovar Typhimurium. The nucleotide sequence of the replication region of both prophages is identical, and similar in organization to the replication region of bacteriophage lambda. To investigate the replication of the Gifsy phages and the relationship between Gifsy and host chromosome replication, a plasmid which contained all the genes and regulatory sequences required for autonomous replication in bacterial cells was constructed. This plasmid, pGifsy, was stably maintained in Escherichia coli cells. The helicase loader of the Gifsy phages is very similar to the DnaC protein of the host, a feature characteristic of a large group of prophages common in the sequenced genomes of pathogenic enterobacteria. This DnaC-like protein showed no similarity to the helicase loader of bacteriophage lambda and closely related phages. Interestingly, unlike plasmids derived from bacteriophage lambda (lambda plasmids), pGifsy did not require a gene encoding the putative helicase loader for replication, although deletion of this gene resulted in a decrease in plasmid copy number. Under these conditions, it was shown that the plasmid utilized the helicase loader coded by the host. On the other hand, the viral protein could not substitute for DnaC in bacterial chromosome replication. The results of the current study support the hypothesis that the enterobacterial helicase loader is of viral origin. This hypothesis explains why the gene for DnaC, the protein central to both replication initiation and replication restart in E. coli, is present in the genomes of Escherichia, Shigella, Salmonella and Buchnera, but not in the genomes of related enterobacteria.  (+info)

Optimization and clinical validation of a pathogen detection microarray. (58/120)

DNA microarrays used as 'genomic sensors' have great potential in clinical diagnostics. Biases inherent in random PCR-amplification, cross-hybridization effects, and inadequate microarray analysis, however, limit detection sensitivity and specificity. Here, we have studied the relationships between viral amplification efficiency, hybridization signal, and target-probe annealing specificity using a customized microarray platform. Novel features of this platform include the development of a robust algorithm that accurately predicts PCR bias during DNA amplification and can be used to improve PCR primer design, as well as a powerful statistical concept for inferring pathogen identity from probe recognition signatures. Compared to real-time PCR, the microarray platform identified pathogens with 94% accuracy (76% sensitivity and 100% specificity) in a panel of 36 patient specimens. Our findings show that microarrays can be used for the robust and accurate diagnosis of pathogens, and further substantiate the use of microarray technology in clinical diagnostics.  (+info)

Modular organization in the reductive evolution of protein-protein interaction networks. (59/120)

BACKGROUND: The variation in the sizes of the genomes of distinct life forms remains somewhat puzzling. The organization of proteins into domains and the different mechanisms that regulate gene expression are two factors that potentially increase the capacity of genomes to create more complex systems. High-throughput protein interaction data now make it possible to examine the additional complexity generated by the way that protein interactions are organized. RESULTS: We have studied the reduction in genome size of Buchnera compared to its close relative Escherichia coli. In this well defined evolutionary scenario, we found that among all the properties of the protein interaction networks, it is the organization of networks into modules that seems to be directly related to the evolutionary process of genome reduction. CONCLUSION: In Buchnera, the apparently non-random reduction of the modular structure of the networks and the retention of essential characteristics of the interaction network indicate that the roles of proteins within the interaction network are important in the reductive process.  (+info)

Conservation of the links between gene transcription and chromosomal organization in the highly reduced genome of Buchnera aphidicola. (60/120)

BACKGROUND: Genomic studies on bacteria have clearly shown the existence of chromosomal organization as regards, for example, to gene localization, order and orientation. Moreover, transcriptomic analyses have demonstrated that, in free-living bacteria, gene transcription levels and chromosomal organization are mutually influenced. We have explored the possible conservation of relationships between mRNA abundances and chromosomal organization in the highly reduced genome of Buchnera aphidicola, the primary endosymbiont of the aphids, and a close relative to Escherichia coli. RESULTS: Using an oligonucleotide-based microarray, we normalized the transcriptomic data by genomic DNA signals in order to have access to inter-gene comparison data. Our analysis showed that mRNA abundances, gene organization (operon) and gene essentiality are correlated in Buchnera (i.e., the most expressed genes are essential genes organized in operons) whereas no link between mRNA abundances and gene strand bias was found. The effect of Buchnera genome evolution on gene expression levels has also been analysed in order to assess the constraints imposed by the obligate symbiosis with aphids, underlining the importance of some gene sets for the survival of the two partners. Finally, our results show the existence of spatial periodic transcriptional patterns in the genome of Buchnera. CONCLUSION: Despite an important reduction in its genome size and an apparent decay of its capacity for regulating transcription, this work reveals a significant correlation between mRNA abundances and chromosomal organization of the aphid-symbiont Buchnera.  (+info)

Temporal fragmentation of speciation in bacteria. (61/120)

Because bacterial recombination involves the occasional transfer of small DNA fragments between strains, different sets of niche-specific genes may be maintained in populations that freely recombine at other loci. Therefore, genetic isolation may be established at different times for different chromosomal regions during speciation as recombination at niche-specific genes is curtailed. To test this model, we separated sequence divergence into rate and time components, revealing that different regions of the Escherichia coli and Salmonella enterica chromosomes diverged over a approximately 70-million-year period. Genetic isolation first occurred at regions carrying species-specific genes, indicating that physiological distinctiveness between the nascent Escherichia and Salmonella lineages was maintained for tens of millions of years before the complete genetic isolation of their chromosomes.  (+info)

The role of mutational dynamics in genome shrinkage. (62/120)

Genome shrinkage occurs after whole genome duplications (WGDs) and in the evolution of parasitic or symbiotic species. The dynamics of this process, whether it occurs by single gene deletions or also by larger deletions are however unknown. In yeast, genome shrinkage has occurred after a WGD. Using a computational model of genome evolution, we show that in a random genome single gene deletions cannot explain the observed pattern of gene loss in yeast. The distribution of genes deleted per event can be very well described by a geometric distribution, with a mean of 1.1 genes per event. In terms of deletions of a stretch of base pairs, we find that a geometric distribution with an average of 500-600 base pairs per event describes the data very well. Moreover, in the model, as in the data, gene pairs that have a small intergenic distance are more likely to be both deleted. This proves that simultaneous deletion of multiple genes causes the observed pattern of gene deletions, rather than deletion of functionally clustered genes by selection. Furthermore, we found that in the bacterium Buchnera aphidicola larger deletions than in yeast are necessary to explain the clustering of deleted genes. We show that the excess clustering of deleted genes in B. aphidicola can be explained by the clustering of genes in operons. Therefore, we show that selection has little effect on the clustering of deleted genes after the WGD in yeast, while it has during genome shrinkage in B. aphidicola.  (+info)

Evolution of the secondary symbiont "Candidatus serratia symbiotica" in aphid species of the subfamily lachninae. (63/120)

 (+info)

The striking case of tryptophan provision in the cedar aphid Cinara cedri. (64/120)

 (+info)