IMMUNIZATION AGAINST BRUCELLA INFECTION. 10. THE RELATIVE IMMUNOGENICITY OF BRUCELLA ABORTUS STRAIN 19-BA AND BRUCELLA MELITENSIS STRAIN REV I IN CYNOMOLGUS PHILIPPINENSIS. (33/138)

Continuing previous studies, the authors investigated the immunogenicity of low doses of Brucella melitensis strain Rev I in Cynomolgus monkeys challenged by the respiratory route and compared the efficacy of Rev I vaccine with that of vaccine from Br. abortus strain 19-BA.Challenge with the virulent Br. melitensis strain 6015 indicated that 19-BA vaccine was considerably more effective when administered intracutaneously than subcutaneously, whereas with Rev I vaccine the difference was slight, but Rev I conferred immunity in much lower doses. It was found that a dose as low as 260 cells of Rev I led to a high degree of immunity, although there was a very pronounced delay in the bacteriological response. The authors conclude that the results obtained justify trials of the safety of Rev I vaccine for man in the low dosage effective for cynomolgi.  (+info)

Brucella lumazine synthase elicits a mixed Th1-Th2 immune response and reduces infection in mice challenged with Brucella abortus 544 independently of the adjuvant formulation used. (34/138)

The immunogenicity and protective efficacy of recombinant lumazine synthase from Brucella spp. (rBLS) administered with different adjuvants was evaluated in mice. Mice were immunized with rBLS in the absence or the presence of aluminum hydroxide gel (BLS-Al), monophosphoryl lipid A (BLS-MPA), or incomplete Freund's adjuvant (BLS-IFA). rBLS per se induced a vigorous immunoglobulin G (IgG) response, with high titers of IgG1 as well as IgG2. All the adjuvants increased this response; the BLS-IFA formulation was the most effective at inducing BLS-specific IgG antibodies. In addition, after in vitro stimulation with rBLS, spleen cells from BLS-IFA-, BLS-Al-, or BLS-MPA-immunized mice proliferated and produced interleukin-2 (IL-2), gamma interferon (IFN-gamma), IL-10, and IL-4, suggesting the induction of a mixed Th1-Th2 response. Immunization with rBLS protected mice against challenge with B. abortus 544. The levels of protection in the spleen were similar for all adjuvants, but only BLS-Al and BLS-IFA were effective in the liver. Our results indicate that BLS might be a useful candidate for the development of subunit vaccines against brucellosis, since it elicits antigen-specific cellular responses, with production of IFN-gamma and protection, independently of the adjuvant formulation used.  (+info)

Evaluation of Brucella abortus phosphoglucomutase (pgm) mutant as a new live rough-phenotype vaccine. (35/138)

Brucella abortus S19 is the vaccine most frequently used against bovine brucellosis. Although it induces good protection levels, it cannot be administered to pregnant cattle, revaccination is not advised due to interference in the discrimination between infected and vaccinated animals during immune-screening procedures, and the vaccine is virulent for humans. Due to these reasons, there is a continuous search for new bovine vaccine candidates that may confer protection levels comparable to those conferred by S19 but without its disadvantages. A previous study characterized the phenotype associated with the phosphoglucomutase (pgm) gene disruption in Brucella abortus S2308, as well as the possible role for the smooth lipopolysaccharide (LPS) in virulence and intracellular multiplication in HeLa cells (J. E. Ugalde, C. Czibener, M. F. Feldman, and R. A. Ugalde, Infect. Immun. 68:5716-5723, 2000). In this report, we analyze the protection, proliferative response, and cytokine production induced in BALB/c mice by a deltapgm deletion strain. We show that this strain synthesizes O antigen with a size of approximately 45 kDa but is rough. This is due to the fact that the deltapgm strain is unable to assemble the O side chain in the complete LPS. Vaccination with the deltapgm strain induced protection levels comparable to those induced by S19 and generated a proliferative splenocyte response and a cytokine profile typical of a Th1 response. On the other hand, we were unable to detect a specific anti-O-antigen antibody response by using the fluorescence polarization assay. In view of these results, the possibility that the deltapgm mutant could be used as a vaccination strain is discussed.  (+info)

Rough vaccines in animal brucellosis: structural and genetic basis and present status. (36/138)

Brucellosis control and eradication requires serological tests and vaccines. Effective classical vaccines (S19 in cattle and Rev 1 in small ruminants), however, induce antibodies to the O-polysaccharide of the lipopolysaccharide which may be difficult to distinguish from those resulting from infection and may thus complicate diagnosis. Rough attenuated mutants lack the O-polysaccharide and would solve this problem if eliciting protective immunity; the empirically obtained rough mutants 45/20 and RB51 have been used as vaccines. Strain 45/20 is reportedly unstable and it is not presently used. RB51 is increasingly used instead of S19 in some countries but it is rifampicin resistant and its effectiveness is controversial. Some controlled experiments have found good or absolute protection in adult cattle vaccinated orally (full dose) or subcutaneously (reduced dose) and in one field experiment, RB51 was reported to afford absolute protection to calves and to perform better than S19. Controlled experiments in calves, however, have shown reduced doses of RB51 to be ineffective, full doses only partially effective, and RB51 less effective than S19 against severe challenges. Moreover, other observations suggest that RB51 is ineffective when prevalence is high. RB51 is not useful in sheep and evidence in goats is preliminary and contradictory. Rough mutants obtained by molecular biology methods on the knowledge of the genetics and structure of Brucella lipopolysaccharide may offer alternatives. The B. abortus manBcore (rfbK) mutant seems promising in cattle, and analyses in mice suggest that mutations affecting only the O-polysaccharide result in better vaccines than those affecting both core and O-polysaccharide. Possible uses of rough vaccines also include boosting immunity by revaccination but solid evidence on its effectiveness, safety and practicality is not available.  (+info)

An RNA vaccine based on recombinant Semliki Forest virus particles expressing the Cu,Zn superoxide dismutase protein of Brucella abortus induces protective immunity in BALB/c mice. (37/138)

We constructed infectious but replication-deficient Semliki Forest virus (SFV) particles carrying recombinant RNA encoding Brucella abortus Cu,Zn superoxide dismutase (SOD). The recombinant SFV particles (SFV-SOD particles) were then evaluated for their ability to induce a T-cell immune response and to protect BALB/c mice against a challenge with B. abortus 2308. Intraperitoneal injection of mice with recombinant SFV-SOD particles did not lead to the induction of SOD-specific antibodies, at least until week 6 after immunization (the end of the experiment). In vitro stimulation of splenocytes from the vaccinated mice with either recombinant Cu,Zn SOD (rSOD) or crude Brucella protein resulted in a T-cell proliferative response and the induction of gamma interferon secretion but not interleukin-4. In addition, the splenocytes exhibited significant levels of cytotoxic T-lymphocyte activity against Brucella-infected cells. The SFV-SOD particles, but not the control virus particles, induced a significant level of protection in BALB/c mice against challenge with B. abortus virulent strain 2308. These findings indicated that an SFV-based vector carrying the SOD gene has potential for use as a vaccine to induce resistance against B. abortus infections.  (+info)

Protective properties of rifampin-resistant rough mutants of Brucella melitensis. (38/138)

Vaccination against Brucella infections in animals is usually performed by administration of live attenuated smooth B. abortus strain S19 and B. melitensis strain Rev1. They are proven effective vaccines against B. abortus in cattle and against B. melitensis and B. ovis in sheep and goats, respectively. However, both vaccines have the main drawback of inducing O-polysaccharide-specific antibodies that interfere with serologic diagnosis of disease. In addition, they retain residual virulence, being a cause of abortion in pregnant animals and infection in humans. To overcome these problems, one approach is to develop defined rough mutant Brucella strains lacking O antigen of lipopolysaccharide. B. abortus rough strain RB51, a rifampin-resistant mutant of virulent strain B. abortus 2308, is used as a vaccine against B. abortus infection in cattle in some countries. However, RB51 is not effective in sheep, and there is only preliminary evidence that it is effective in goats. In this study, we tested the efficacies of six rifampin-resistant rough strains of B. melitensis in protecting BALB/c mice exposed to B. melitensis infection. The protective properties, as well as both humoral and cellular immune responses, were assessed in comparison with those provided by B. melitensis Rev1 and B. abortus RB51 vaccines. The results indicated that these rough mutants were able to induce a very good level of protection against B. melitensis infection, similar to that provided by Rev1 and superior to that of RB51, without inducing antibodies to O antigen. In addition, all B. melitensis mutants were able to stimulate good production of gamma interferon. The characteristics of these strains encourage further evaluation of them as alternative vaccines to Rev1 in primary host species.  (+info)

A DNA vaccine coding for the Brucella outer membrane protein 31 confers protection against B. melitensis and B. ovis infection by eliciting a specific cytotoxic response. (39/138)

The development of an effective subunit vaccine against brucellosis is a research area of intense interest. The outer membrane proteins (Omps) of Brucella spp. have been extensively characterized as potential immunogenic and protective antigens. This study was conducted to evaluate the immunogenicity and protective efficacy of the B. melitensis Omp31 gene cloned in the pCI plasmid (pCIOmp31). Immunization of BALB/c mice with pCIOmp31 conferred protection against B. ovis and B. melitensis infection. Mice vaccinated with pCIOmp31 developed a very weak humoral response, and in vitro stimulation of their splenocytes with recombinant Omp31 did not induced the secretion of gamma interferon. Splenocytes from Omp31-vaccinated animals induced a specific cytotoxic-T-lymphocyte activity, which leads to the in vitro lysis of Brucella-infected macrophages. pCIOmp31 immunization elicited mainly CD8(+) T cells, which mediate cytotoxicity via perforins, but also CD4(+) T cells, which mediate lysis via the Fas-FasL pathway. In vivo depletion of T-cell subsets showed that the pCIOmp31-induced protection against Brucella infection is mediated predominantly by CD8(+) T cells, although CD4(+)T cells also contribute. Our results demonstrate that the Omp31 DNA vaccine induces cytotoxic responses that have the potential to contribute to protection against Brucella infection. The protective response could be related to the induction of CD8(+) T cells that eliminate Brucella-infected cells via the perforin pathway.  (+info)

Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. (40/138)

The immunogenicity and protective efficacy of the recombinant 31-kDa outer membrane protein from Brucella melitensis (rOmp31), administered with incomplete Freund's adjuvant, were evaluated in mice. Immunization of BALB/c mice with rOmp31 conferred protection against B. ovis and B. melitensis infection. rOmp31 induced a vigorous immunoglobulin G (IgG) response, with higher IgG1 than IgG2 titers. In addition, spleen cells from rOmp31-immunized mice produced interleukin 2 (IL-2) and gamma interferon, but not IL-10 or IL-4, after in vitro stimulation with rOmp31, suggesting the induction of a T helper 1 (Th1) response. Splenocytes from rOmp31-vaccinated animals also induced a specific cytotoxic-T-lymphocyte activity, which led to the in vitro lysis of Brucella-infected macrophages. In vitro T-cell subset depletion indicated that rOmp31 immunization elicited specific CD4+ T cells that secrete IL-2 and gamma interferon, while CD8+ T cells induced cytotoxic-T-lymphocyte activity. In vivo depletion of T-cell subsets showed that the rOmp31-elicited protection against B. melitensis infection is mediated by CD4+ T cells while the contribution of CD8+ T cells may be limited. We then evaluated the immunogenicity and protective efficacy of a known exposed region from Omp31 on the Brucella membrane, a peptide that contains amino acids 48 to 74 of Omp31. Immunization with the synthetic peptide in adjuvant did not elicit a specific humoral response but elicited a Th1 response mediated by CD4+ T cells. The peptide in adjuvant induced levels of protection similar to those induced by rOmp31 against B. melitensis but less protection than was induced by rOmp31 against B. ovis. Our results indicate that rOmp31 could be a useful candidate for the development of subunit vaccines against B. melitensis and B. ovis.  (+info)