Foreign complementary sequences facilitate genetic RNA recombination in brome mosaic virus. (49/238)

We have demonstrated that local antisense sequences can mediate genetic recombination within the 3' noncoding region among brome mosaic virus (BMV) RNAs (P. Nagy and J. J. Bujarski, 1993, Proc. Natl. Acad. Sci. USA 90, 6390-6394). Here we show that foreign complementary inserts can direct crossovers between BMV RNA3 components within an internal region. A 170-nt polynucleotide derived from the cowpea chlorotic mottle virus (CCMV) RNA3 was inserted just upstream of the initiation codon of the BMV coat protein open reading frame in either sense or antisense orientations. The resulting respective mutants, BCC+ and BCC-, maintained unchanged CCMV inserts when inoculated separately on leaves of a local lesion host for BMV. In contrast, when a mixture containing both mutated RNAs3 was inoculated, a significant fraction of lesions accumulated the BMV RNA3 lacking the CCMV insert. The presence of a 3' marker mutation confirmed that the BMV RNA3 progeny arose due to crossovers between BCC+ and BCC- within the complementary sequences. The highest frequency of recombinant appearance was observed when the RNA mixtures were annealed prior to inoculation on the host plants. Our results confirm a concept predicting the general nature of the heteroduplex-mediated recombination functioning in RNA viruses. Examples of possible applications of this approach in recombinant RNA technology are discussed.  (+info)

The Brome mosaic virus subgenomic promoter hairpin is structurally similar to the iron-responsive element and functionally equivalent to the minus-strand core promoter stem-loop C. (50/238)

In the Bromoviridae family of plant viruses, trinucleotide hairpin loops play an important role in RNA transcription. Recently, we reported that Brome mosaic virus (BMV) subgenomic (sg) transcription depended on the formation of an unusual triloop hairpin. By native gel electrophoresis, enzymatic structure probing, and NMR spectroscopy it is shown here that in the absence of viral replicase the hexanucleotide loop 5'C1AUAG5A3' of this RNA structure can adopt a pseudo trinucleotide loop conformation by transloop base pairing between C1 and G5. By means of in vitro replication assays using partially purified BMV RNA-dependent RNA polymerase (RdRp) it was found that other base pairs contribute to sg transcription, probably by stabilizing the formation of this pseudo triloop, which is proposed to be the primary element recognized by the viral replicase. The BMV pseudo triloop structure strongly resembles iron-responsive elements (IREs) in cellular messenger RNAs and may represent a general protein-binding motif. In addition, in vitro replication assays showed that the BMV sg hairpin is functionally equivalent to the minus-strand core promoter hairpin stem-loop C at the 3' end of BMV RNAs. Replacement of the sg hairpin by stem-loop C yielded increased sg promoter activity whereas replacement of stem-loop C by the sg hairpin resulted in reduced minus-strand promoter activity. We conclude that AUA triloops represent the common motif in the BMV sg and minus-strand promoters required for recruitment of the viral replicase. Additional sequence elements of the minus-strand promoter are proposed to direct the RdRp to the initiation site at the 3' end of the genomic RNA.  (+info)

Positional effect of deletions on viability, especially on encapsidation, of Brome mosaic virus D-RNA in barley protoplasts. (51/238)

Brome mosaic virus (BMV), a tripartite RNA plant virus, accumulates RNA3-derived defective RNAs (D-RNAs) in which 477-500 nucleotides (nt) are deleted in the central region of the 3a protein open reading frame (ORF), after prolonged infection in barley. In the present study, six artificial D-RNAs (AD-RNAs), having deletions of the same size as the naturally occurring D-RNA but at different positions in the 3a ORF, were constructed and tested for their amplification and encapsidation in barley protoplasts by coinoculation with BMV RNA1 and 2, or RNA1, 2, and 3. Northern blot analysis of RNA accumulation in total and virion fractions showed that deletions of 492 nt in the 3'-proximal and the 5'-proximal regions of the 3a ORF decreased encapsidation efficiency of the AD-RNAs compared with that of RNA3, whereas deletions in the central region enhanced encapsidation efficiency. The present results also show that deletion positions affect competition with RNA3 in the amplification and encapsidation of AD-RNAs.  (+info)

Symptom induction by Cowpea chlorotic mottle virus on Vigna unguiculata is determined by amino acid residue 151 in the coat protein. (52/238)

The type strain of Cowpea chlorotic mottle virus (CCMV-T) produces a bright chlorosis in cowpea (Vigna unguiculata cv. California Blackeye). The attenuated variant (CCMV-M) induces mild green mottle symptoms that were previously mapped to RNA 3. Restriction fragment exchanges between RNA 3 cDNA clones of CCMV-T and CCMV-M that generate infectious transcripts and site-directed mutagenesis indicated that the codon encoding amino acid residue 151 of the coat protein determines the symptom phenotypes of CCMV-T and CCMV-M. Amino acid 151 is within an alpha-helical structure required for calcium ion binding and virus particle stability. No differences in virion stability or accumulation were detected between CCMV-T and CCMV-M. Mutational analysis suggested that the amino acid at position 151 and not the nucleotide sequence induce the symptom phenotype. Thus, it is likely that subtle influences by amino acid residue 151 in coat protein-host interactions result in chlorotic and mild green mottle symptoms.  (+info)

A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. (53/238)

We show that brome mosaic virus (BMV) RNA replication protein 1a, 2a polymerase, and a cis-acting replication signal recapitulate the functions of Gag, Pol, and RNA packaging signals in conventional retrovirus and foamy virus cores. Prior to RNA replication, 1a forms spherules budding into the endoplasmic reticulum membrane, sequestering viral positive-strand RNA templates in a nuclease-resistant, detergent-susceptible state. When expressed, 2a polymerase colocalizes in these spherules, which become the sites of viral RNA synthesis and retain negative-strand templates for positive-strand RNA synthesis. These results explain many features of replication by numerous positive strand RNA viruses and reveal that these viruses, reverse transcribing viruses, and dsRNA viruses share fundamental similarities in replication and may have common evolutionary origins.  (+info)

RNA-dependent RNA polymerase complex of Brome mosaic virus: analysis of the molecular structure with monoclonal antibodies. (54/238)

Viral RNA-dependent RNA polymerase (RdRp) plays crucial roles in the genomic replication and subgenomic transcription of Brome mosaic virus (BMV), a positive-stranded RNA plant virus. BMV RdRp is a complex of virus-encoded 1a and 2a proteins and some cellular factors, and associates with the endoplasmic reticulum at an infection-specific structure in the cytoplasm of host cells. In this study, we investigate the gross structure of the active BMV RdRp complex using monoclonal antibodies raised against the 1a and 2a proteins. Immunoprecipitation experiments showed that the intermediate region between the N-terminal methyltransferase-like domain and the C-terminal helicase-like domain of 1a protein, and the N terminus region of 2a protein are exposed on the surface of the solubilized RdRp complex. Inhibition assays for membrane-bound RdRp suggested that the intermediate region between the methyltransferase-like and the helicase-like domains of 1a protein is located at the border of the region buried within a membrane structure or with membrane-associated material.  (+info)

Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases. (55/238)

RNA-dependent RNA polymerases (RdRps) that initiate RNA synthesis by a de novo mechanism should specifically recognize the template initiation nucleotide, T1, and the substrate initiation nucleotide, the NTPi. The RdRps from hepatitis C virus (HCV), bovine viral diarrhea virus (BVDV), and GB virus-B all can initiate RNA synthesis by a de novo mechanism. We used RNAs and GTP analogs, respectively, to examine the use of the T1 nucleotide and the initiation nucleotide (NTPi) during de novo initiation of RNA synthesis. The effects of the metal ions Mg(2+) and Mn(2+) on initiation were also analyzed. All three viral RdRps require correct base pairing between the T1 and NTPi for efficient RNA synthesis. However, each RdRp had some distinct tolerances for modifications in the T1 and NTPi. For example, the HCV RdRp preferred an NTPi lacking one or more phosphates regardless of whether Mn(2+) was present or absent, while the BVDV RdRp efficiently used GDP and GMP for initiation of RNA synthesis only in the presence of Mn(2+). These and other results indicate that although the three RdRps share a common mechanism of de novo initiation, each has distinct preferences.  (+info)

RNA recombination in brome mosaic virus: effects of strand-specific stem-loop inserts. (56/238)

A model system of a single-stranded trisegment Brome mosaic bromovirus (BMV) was used to analyze the mechanism of homologous RNA recombination. Elements capable of forming strand-specific stem-loop structures were inserted at the modified 3' noncoding regions of BMV RNA3 and RNA2 in either positive or negative orientations, and various combinations of parental RNAs were tested for patterns of the accumulating recombinant RNA3 components. The structured negative-strand stem-loops that were inserted in both RNA3 and RNA2 reduced the accumulation of RNA3-RNA2 recombinants to a much higher extent than those in positive strands or the unstructured stem-loop inserts in either positive or negative strands. The use of only one parental RNA carrying the stem-loop insert reduced the accumulation of RNA3-RNA2 recombinants even further, but only when the stem-loops were in negative strands of RNA2. We assume that the presence of a stable stem-loop downstream of the landing site on the acceptor strand (negative RNA2) hampers the reattachment and reinitiation processes. Besides RNA3-RNA2 recombinants, the accumulation of nontargeted RNA3-RNA1 and RNA3-RNA3 recombinants were observed. Our results provide experimental evidence that homologous recombination between BMV RNAs more likely occurs during positive- rather than negative-strand synthesis.  (+info)