Generation of CD8(+) T-cell responses to Mycobacterium bovis and mycobacterial antigen in experimental bovine tuberculosis. (1/1373)

Protective immunity against tuberculosis is considered to be essentially cell mediated, and an important role for CD8(+) T lymphocytes has been suggested by several studies of murine and human infections. The present work, using an experimental model of infection with Mycobacterium bovis in cattle, showed that live M. bovis elicits the activation of CD8(+) T cells in vitro. However, a sonic extract prepared from M. bovis (MBSE) and protein purified derivative (PPDb) also induced a considerable degree of activation of the CD8(+) T cells. Analysis of proliferative responses of peripheral blood mononuclear cells, purified CD8(+) T cells, and CD8(+) T-cell clones to M. bovis and to soluble antigenic preparations (MBSE, PPDb) showed that the responses of all three types of cells were always superior for live mycobacteria but that strong responses were also obtained with complex soluble preparations. Furthermore, while cytotoxic capabilities were not investigated, the CD8(+) T cells were found to produce and release gamma interferon in response to antigen (live and soluble), which indicated one possible protective mechanism for these cells in bovine tuberculosis. Finally, it was demonstrated by metabolic inhibition with brefeldin A and cytochalasin D at the clonal level that an endogenous pathway of antigen processing is required for presentation to bovine CD8(+) cells and that presentation is also dependent on phagocytosis of the antigen.  (+info)

Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells. (2/1373)

LY-A strain is a Chinese hamster ovary cell mutant resistant to sphingomyelin (SM)-directed cytolysin and has a defect in de novo SM synthesis. Metabolic labeling experiments with radioactive serine, sphingosine, and choline showed that LY-A cells were defective in synthesis of SM from these precursors, but not syntheses of ceramide (Cer), glycosphingolipids, or phosphatidylcholine, indicating a specific defect in the conversion of Cer to SM in LY-A cells. In vitro experiments showed that the specific defect of SM formation in LY-A cells was not due to alterations in enzymatic activities responsible for SM synthesis or degradation. When cells were treated with brefeldin A, which causes fusion of the Golgi apparatus with the endoplasmic reticulum (ER), de novo SM synthesis in LY-A cells was restored to the wild-type level. Pulse-chase experiments with a fluorescent Cer analogue, N-(4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-pentanoyl)-D-erythro-sphingosine (C5-DMB-Cer), revealed that in wild-type cells C5-DMB-Cer was redistributed from intracellular membranes to the Golgi apparatus in an intracellular ATP-dependent manner, and that LY-A cells were defective in the energy-dependent redistribution of C5-DMB-Cer. Under ATP-depleted conditions, conversion of C5-DMB-Cer to C5-DMB-SM and of [3H]sphingosine to [3H]SM in wild-type cells decreased to the levels in LY-A cells, which were not affected by ATP depletion. ER-to-Golgi apparatus trafficking of glycosylphosphatidylinositol-anchored or membrane-spanning proteins in LY-A cells appeared to be normal. These results indicate that the predominant pathway of ER-to-Golgi apparatus trafficking of Cer for de novo SM synthesis is ATP dependent and that this pathway is almost completely impaired in LY-A cells. In addition, the specific defect of SM synthesis in LY-A cells suggests different pathways of Cer transport for glycosphingolipids versus SM synthesis.  (+info)

Assembly of very low density lipoprotein: a two-step process of apolipoprotein B core lipidation. (3/1373)

The liver plays a primary role in lipid metabolism. Important functions include the synthesis and incorporation of hydrophobic lipids, triacylglycerols and cholesteryl esters into the core of water-miscible particles called lipoproteins and the secretion of these particles into the circulation for transport to distant tissues. In this article, we present a brief overview of one aspect of the assembly process of very low density lipoproteins, namely, possible mechanisms for combining core lipids with apolipoprotein B. This is a complex process in which apolipoprotein B interacts with core lipids to form very low density lipoproteins by a two-step process that can be dissociated biochemically.  (+info)

Structural basis for the inhibitory effect of brefeldin A on guanine nucleotide-exchange proteins for ADP-ribosylation factors. (4/1373)

Protein secretion through the endoplasmic reticulum and Golgi vesicular trafficking system is initiated by the binding of ADP-ribosylation factors (ARFs) to donor membranes, leading to recruitment of coatomer, bud formation, and eventual vesicle release. ARFs are approximately 20-kDa GTPases that are active with bound GTP and inactive with GDP bound. Conversion of ARF-GDP to ARF-GTP is regulated by guanine nucleotide-exchange proteins. All known ARF guanine nucleotide-exchange proteins contain a Sec7 domain of approximately 200 amino acids that includes the active site and fall into two classes that differ in molecular size and susceptibility to inhibition by the fungal metabolite brefeldin A (BFA). To determine the structural basis of BFA sensitivity, chimeric molecules were constructed by using sequences from the Sec7 domains of BFA-sensitive yeast Sec7 protein (ySec7d) and the insensitive human cytohesin-1 (C-1Sec7). Based on BFA inhibition of the activities of these molecules with recombinant yeast ARF2 as substrate, the Asp965-Met975 sequence in ySec7d was shown to be responsible for BFA sensitivity. A C-1Sec7 mutant in which Ser199, Asn204, and Pro209 were replaced with the corresponding ySec7d amino acids, Asp965, Gln970, and Met975, exhibited BFA sensitivity similar to that of recombinant ySec7d (rySec7d). Single replacement in C-1Sec7 of Ser199 or Pro209 resulted in partial inhibition by BFA, whereas replacement of Gln970 in ySec7d with Asn (as found in C-1Sec7) had no effect. As predicted, the double C-1Sec7 mutant with S199D and P209M was BFA-sensitive, demonstrating that Asp965 and Met975 in ySec7d are major molecular determinants of BFA sensitivity.  (+info)

Intracellular trafficking pathways in the assembly of connexins into gap junctions. (5/1373)

Trafficking pathways underlying the assembly of connexins into gap junctions were examined using living COS-7 cells expressing a range of connexin-aequorin (Cx-Aeq) chimeras. By measuring the chemiluminescence of the aequorin fusion partner, the translocation of oligomerized connexins from intracellular stores to the plasma membrane was shown to occur at different rates that depended on the connexin isoform. Treatment of COS-7 cells expressing Cx32-Aeq and Cx43-Aeq with brefeldin A inhibited the movement of these chimera to the plasma membrane by 84 +/- 4 and 88 +/- 4%, respectively. Nocodazole treatment of the cells expressing Cx32-Aeq and Cx43-Aeq produced 29 +/- 16 and 4 +/- 7% inhibition, respectively. In contrast, the transport of Cx26 to the plasma membrane, studied using a construct (Cx26/43T-Aeq) in which the short cytoplasmic carboxyl-terminal tail of Cx26 was replaced with the extended carboxyl terminus of Cx43, was inhibited 89 +/- 5% by nocodazole and was minimally affected by exposure of cells to brefeldin A (17 +/-11%). The transfer of Lucifer yellow across gap junctions between cells expressing wild-type Cx32, Cx43, and the corresponding Cx32-Aeq and Cx43-Aeq chimeras was reduced by nocodazole treatment and abolished by brefeldin A treatment. However, the extent of dye coupling between cells expressing wild-type Cx26 or the Cx26/43T-Aeq chimeras was not significantly affected by brefeldin A treatment, but after nocodazole treatment, transfer of dye to neighboring cells was greatly reduced. These contrasting effects of brefeldin A and nocodazole on the trafficking properties and intercellular dye transfer are interpreted to suggest that two pathways contribute to the routing of connexins to the gap junction.  (+info)

Initiation of galactosaminoglycan biosynthesis. Separate galactosylation and dephosphorylation pathways for phosphoxylosylated decorin protein and exogenous xyloside. (6/1373)

By using various radiolabelled precursors, glycosylation and phosphorylation of decorin in a rat fibroblast cell line was investigated in the presence of increasing concentrations of p-nitrophenyl-O-beta-d-xylopyranoside. Decorin core protein glycanation was suppressed to approximately 25% of the normal level in the presence of 2 mm and 3 mm xyloside. Glycans/saccharides were released from the core protein and size-separated by gel chromatography. The intracellular decorin obtained from cells treated with 2 mm xyloside was substituted with Xyl and also with Gal-Xyl and Gal-Gal-Xyl, but not with longer saccharides. Only the trisaccharide contained an almost fully phosphorylated Xyl. We conclude that galactosylation of endogenous, xylosylated decorin and exogenous xyloside probably follow separate pathways or that xylosides and early decorin glycoforms are kept separated. At the addition of the first glucuronic acid the two pathways seem to merge and dephosphorylation of decorin takes place. Xyloside-primed and secreted galactosaminoglycan chains produced simultanously retained phosphorylated Xyl. Inadequate dephosphorylation could be due to excess substrate or to a short transit.time. As shown previously [Moses, J., Oldberg, A., Eklund, E. & Fransson, L.-A. (1997) Eur. J. Biochem. 248, 767-774], brefeldin A-arrested decorin is substituted with the linkage-region extended with an undersulphated and incomplete galactosaminoglycan chain. In cells treated with this drug, xylosides were unable to prime galactosaminoglycan synthesis and unable to inhibit glycosylation and phosporylation of decorin.  (+info)

Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. (7/1373)

We demonstrate that the major in vivo targets of brefeldin A (BFA) in the secretory pathway of budding yeast are the three members of the Sec7 domain family of ARF exchange factors: Gea1p and Gea2p (functionally interchangeable) and Sec7p. Specific residues within the Sec7 domain are important for BFA inhibition of ARF exchange activity, since mutations in these residues of Gea1p (sensitive to BFA) and of ARNO (resistant to BFA) reverse the sensitivity of each to BFA in vivo and in vitro. We show that the target of BFA inhibition of ARF exchange activity is an ARF-GDP-Sec7 domain protein complex, and that BFA acts to stabilize this complex to a greater extent for a BFA-sensitive Sec7 domain than for a resistant one.  (+info)

Hormonal regulation of oligopeptide transporter pept-1 in a human intestinal cell line. (8/1373)

The intestinal oligopeptide transporter (cloned as Pept-1) has major roles in protein nutrition and drug therapy. A key unstudied question is whether expression of Pept-1 is hormonally regulated. In this experiment, we investigated whether insulin has such a role. We used a human intestinal cell monolayer (Caco-2) as the in vitro model of human small intestine and glycylglutamine (Gly-Gln) as the model substrate for Pept-1. Results showed that addition of insulin at a physiological concentration (5 nM) to incubation medium greatly stimulates Gly-Gln uptake by Caco-2 cells. This stimulation was blocked when genistein, an inhibitor of tyrosine kinase, was added to incubation medium. Studies of the mechanism of insulin stimulation showed the following. 1) Stimulation occurred promptly (30-60 min) after exposure to insulin. 2) There was no significant change in the Michaelis-Menten constant of Gly-Gln transport, but there was a nearly twofold increase in its maximal velocity. 3) Insulin effect persisted even when Golgi apparatus, which is involved in trafficking of newly synthesized Pept-1, was dismantled. 4) However, there was complete elimination of insulin effect by disruption of microtubules involved in trafficking of preformed Pept-1. 5) Finally, with insulin treatment, there was no change in Pept-1 gene expression, but the amount of Pept-1 protein in the apical membrane was increased. In conclusion, the results show that insulin, when it binds to its receptor, stimulates Gly-Gln uptake by Caco-2 cells by increasing the membrane population of Pept-1. The mechanism appears to be increased translocation of this transporter from a preformed cytoplasmic pool.  (+info)