The brassinosteroid signal transduction pathway. (57/215)

Steroids function as signaling molecules in both animals and plants. While animal steroid hormones are perceived by nuclear receptor family of transcription factors, brassinosteroids (BR) in plants are perceived by a cell surface receptor kinase, BRI1. Recent studies have demonstrated that BR binding to the extracellular domain of BRI1 induces kinase activation and dimerization with another receptor kinase, BAK1. Activated BRI1 or BAK1 then regulate, possibly indirectly, the activities of BIN2 kinase and/or BSU1 phosphatase, which directly regulate the phosphorylation status and nuclear accumulation of two homologous transcription factors, BZR1 and BES1. BZR1 and BES1 directly bind to promoters of BR responsive genes to regulate their expression. The BR signaling pathway has become a paradigm for both receptor kinase signaling in plants and steroid signaling by cell surface receptors in general.  (+info)

Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. (58/215)

Brassinosteroids, the steroid hormones of plants, are perceived at the plasma membrane by a leucine-rich repeat receptor serine/threonine kinase called BRI1. We report a BRI1-interacting protein, BKI1, which is a negative regulator of brassinosteroid signaling. Brassinosteroids cause the rapid dissociation of BKI1-yellow fluorescent protein from the plasma membrane in a process that is dependent on BRI1-kinase. BKI1 is a substrate of BRI1 kinase and limits the interaction of BRI1 with its proposed coreceptor, BAK1, suggesting that BKI1 prevents the activation of BRI1.  (+info)

Sequential regulation of gibberellin, brassinosteroid, and jasmonic acid biosynthesis occurs in rice coleoptiles to control the transcript levels of anti-microbial thionin genes. (59/215)

Transcripts of thionin genes encoding antimicrobial peptides were present at a high level in rice coleoptiles just after germination, and decreased to an undetectable level after about 3 d, but this decline was suppressed by co-treatment with gibberellic acid (GA(3)) and brassinolide (BL). The temporal expression patterns of key enzyme genes for the biosyntheses of gibberellins (GAs) and brassinosteroids (BRs) were correlated with the fluctuation of thionin mRNAs. Jasmonic acid (JA) replaced the effect of GA3 and BL, and its change in endogenous level was parallel to that of the thionin genes. These results strongly suggest that thionin gene expression was positively regulated by JA, whose endogenous level was synergistically regulated by GAs and BRs. In contrast, thionin gene expression in etiolated seedlings remained high while the endogenous level of JA was low, suggesting the presence of another signaling pathway in the dark to maintain the thionin level.  (+info)

An early auxin-responsive Aux/IAA gene from wheat (Triticum aestivum) is induced by epibrassinolide and differentially regulated by light and calcium. (60/215)

The plant hormone auxin plays a central role in regulating many aspects of plant growth and development. This largely occurs as a consequence of changes in gene expression. The Aux/IAA genes are best characterized among the early auxin-responsive genes, which encode short-lived transcriptional repressors. In most plants examined, including Arabidopsis, soybean, and rice, the Aux/IAA genes constitute a large gene family. By screening the available databases, at least 15 expressed sequence tags (ESTs) have been identified from wheat (Triticum aestivum), which exhibit high sequence identity with Aux/IAA homologues in other species. One of these Aux/IAA genes, TaIAA1, harbouring all the four conserved domains characteristic of the Aux/IAA proteins, has been characterized in detail. The expression of TaIAA1 is light-sensitive, tissue-specific, and is induced within 15-30 min of exogenous auxin application. Also, the TaIAA1 transcript levels increase in the presence of a divalent cation, Ca(2+), and this effect is reversed by the calcium-chelating agent, EGTA. The TaIAA1 gene qualifies as the primary response gene because an increase in its transcript levels by auxin is unaffected by cycloheximide. In addition to auxin, the TaIAA1 gene is also induced by brassinosteroid, providing evidence that interplay between hormones is crucial for the regulation of plant growth and development.  (+info)

Effects of the plant steroidal hormone, 24-epibrassinolide, on the mitotic index and growth of onion (Allium cepa) root tips. (61/215)

The purpose of the present study was to determine the effects of the steroidal plant hormone, 24-epibrassinolide (BL), on the mitotic index and growth of onion (Allium cepa) root tips. The classical Allium test was used to gather and quantify data on the rate of root growth, the stages of mitosis, and the number of mitoses in control and BL-treated groups of onions. Low doses of BL (0.005 ppm) nearly doubled the mean root length and the number of mitoses over that of controls. Intermediate doses of BL (0.05 ppm) also produced mean root lengths and number of mitoses that were significantly greater than those of the controls. The highest dose of BL (0.5 ppm) produced mean root lengths and number of mitoses that were less than control values, but the differences were not statistically significant. Examination of longitudinally sectioned root tips produced relatively similar results. This study confirms the suppositions of previous authors who have claimed that exogenously applied BL can increase the number of mitoses in plants, but failed to show cytogenetic data. This is the first report detailing the effects of BL on chromosomes and the cell cycle.  (+info)

Tomato BRASSINOSTEROID INSENSITIVE1 is required for systemin-induced root elongation in Solanum pimpinellifolium but is not essential for wound signaling. (62/215)

The tomato Leu-rich repeat receptor kinase BRASSINOSTEROID INSENSITIVE1 (BRI1) has been implicated in both peptide (systemin) and steroid (brassinosteroid [BR]) hormone perception. In an attempt to dissect these signaling pathways, we show that transgenic expression of BRI1 can restore the dwarf phenotype of the tomato curl3 (cu3) mutation. Confirmation that BRI1 is involved in BR signaling is highlighted by the lack of BR binding to microsomal fractions made from cu3 mutants and the restoration of BR responsiveness following transformation with BRI1. In addition, wound and systemin responses in the cu3 mutants are functional, as assayed by proteinase inhibitor gene induction and rapid alkalinization of culture medium. However, we observed BRI1-dependent root elongation in response to systemin in Solanum pimpinellifolium. In addition, ethylene perception is required for normal systemin responses in roots. These data taken together suggest that cu3 is not defective in systemin-induced wound signaling and that systemin perception can occur via a non-BRI1 mechanism.  (+info)

The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. (63/215)

Programmed cell death (PCD) is a common host response to microbial infection [1-3]. In plants, PCD is associated with immunity to biotrophic pathogens, but it can also promote disease upon infection by necrotrophic pathogens [4]. Therefore, plant cell-suicide programs must be strictly controlled. Here we demonstrate that the Arabidopsis thaliana Brassinosteroid Insensitive 1 (BRI1)-associated receptor Kinase 1 (BAK1), which operates as a coreceptor of BRI1 in brassinolide (BL)-dependent plant development, also regulates the containment of microbial infection-induced cell death. BAK1-deficient plants develop spreading necrosis upon infection. This is accompanied by production of reactive oxygen intermediates and results in enhanced susceptibility to necrotrophic fungal pathogens. The exogenous application of BL rescues growth defects of bak1 mutants but fails to restore immunity to fungal infection. Moreover, BL-insensitive and -deficient mutants do not exhibit spreading necrosis or enhanced susceptibility to fungal infections. Together, these findings suggest that plant steroid-hormone signaling is dispensable for the containment of infection-induced PCD. We propose a novel, BL-independent function of BAK1 in plant cell-death control that is distinct from its BL-dependent role in plant development.  (+info)

BIN4, a novel component of the plant DNA topoisomerase VI complex, is required for endoreduplication in Arabidopsis. (64/215)

How plant organs grow to reach their final size is an important but largely unanswered question. Here, we describe an Arabidopsis thaliana mutant, brassinosteroid-insensitive4 (bin4), in which the growth of various organs is dramatically reduced. Small organ size in bin4 is primarily caused by reduced cell expansion associated with defects in increasing ploidy by endoreduplication. Raising nuclear DNA content in bin4 by colchicine-induced polyploidization partially rescues the cell and organ size phenotype, indicating that BIN4 is directly and specifically required for endoreduplication rather than for subsequent cell expansion. BIN4 encodes a plant-specific, DNA binding protein that acts as a component of the plant DNA topoisomerase VI complex. Loss of BIN4 triggers an ATM- and ATR-dependent DNA damage response in postmitotic cells, and this response coincides with the upregulation of the cyclin B1;1 gene in the same cell types, suggesting a functional link between DNA damage response and endocycle control.  (+info)