The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. (1/215)

Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22alpha-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism.  (+info)

BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. (2/215)

The Arabidopsis bas1-D mutation suppresses the long hypocotyl phenotype caused by mutations in the photoreceptor phytochrome B (phyB). The adult phenotype of bas1-D phyB-4 double mutants mimics that of brassinosteroid biosynthetic and response mutants. bas1-D phyB-4 has reduced levels of brassinosteroids and accumulates 26-hydroxybrassinolide in feeding experiments. The basis for the mutant phenotype is the enhanced expression of a cytochrome P450 (CYP72B1). bas1-D suppresses a phyB-null allele, but not a phyA-null mutation, and partially suppresses a cryptochrome-null mutation. Seedlings with reduced BAS1 expression are hyperresponsive to brassinosteroids in a light-dependent manner and display reduced sensitivity to light under a variety of conditions. Thus, BAS1 represents one of the control points between multiple photoreceptor systems and brassinosteroid signal transduction.  (+info)

Auxin regulates the initiation and radial position of plant lateral organs. (3/215)

Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controlling the switch between meristem propagation and leaf initiation are being identified by genetic and molecular analyses, the radial positioning of leaves, known as phyllotaxis, remains poorly understood. Hormones, especially auxin and gibberellin, are known to influence phyllotaxis, but their specific role in the determination of organ position is not clear. We show that inhibition of polar auxin transport blocks leaf formation at the vegetative tomato meristem, resulting in pinlike naked stems with an intact meristem at the tip. Microapplication of the natural auxin indole-3-acetic acid (IAA) to the apex of such pins restores leaf formation. Similarly, exogenous IAA induces flower formation on Arabidopsis pin-formed1-1 inflorescence apices, which are blocked in flower formation because of a mutation in a putative auxin transport protein. Our results show that auxin is required for and sufficient to induce organogenesis both in the vegetative tomato meristem and in the Arabidopsis inflorescence meristem. In this study, organogenesis always strictly coincided with the site of IAA application in the radial dimension, whereas in the apical-basal dimension, organ formation always occurred at a fixed distance from the summit of the meristem. We propose that auxin determines the radial position and the size of lateral organs but not the apical-basal position or the identity of the induced structures.  (+info)

Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. (4/215)

An assay was developed to study plant receptor kinase activation and signaling mechanisms. The extracellular leucine-rich repeat (LRR) and transmembrane domains of the Arabidopsis receptor kinase BRI1, which is implicated in brassinosteroid signaling, were fused to the serine/threonine kinase domain of XA21, the rice disease resistance receptor. The chimeric receptor initiates plant defense responses in rice cells upon treatment with brassinosteroids. These results, which indicate that the extracellular domain of BRI1 perceives brassinosteroids, suggest a general signaling mechanism for the LRR receptor kinases of plants. This system should allow the discovery of ligands for the LRR kinases, the largest group of plant receptor kinases.  (+info)

Involvement of brassinosteroids in the gravitropic response of primary root of maize. (5/215)

Exogenously applied brassinolide (BL, 10(-9)-10(-5) M) increased gravitropic curvature in maize (Zea mays) primary roots. The BL-enhanced gravitropic curvature was clearly promoted in the presence of indole-3-acetic acid (IAA, 10(-10)-10(-8) M), indicating that BL is interactive with IAA during the gravitropic response. The interactive effect between BL and IAA was completely diminished by treatment of p-chlorophenoxy isobutric acid, an auxin action antagonist. The activation of the gravitropic response by BL in the absence and in the presence of IAA was nullified by application of 2, 3,5-triiodobenzoic acid, a polar auxin transport inhibitor. The data indicate that brassinosteroids (BRs) might be involved in auxin-mediated processes for the gravitropic response. Gas chromotography-selected ion-monitoring analysis revealed that maize primary roots contained approximately 0.3 ng g(-1) fresh weight castasterone as an endogenous BR. Exogenously applied castasterone also increased the gravitropic response of maize roots in an IAA-dependent manner. This study provides the first evidence, to our knowledge, for occurrence and gravitropic activity of BRs in plant roots.  (+info)

Biosynthetic pathways of brassinolide in Arabidopsis. (6/215)

Our previous studies on the endogenous brassinosteroids (BRs) in Arabidopsis have provided suggestive evidence for the operation of the early C6-oxidation and the late C6-oxidation pathways, leading to brassinolide (BL) in Arabidopsis. However, to date the in vivo operation of these pathways has not been fully confirmed in this species. This paper describes metabolic studies using deuterium-labeled BRs in wild-type and BR-insensitive mutant (bri1) seedlings to establish the intermediates of the biosynthetic pathway of BL in Arabidopsis. The first evidence for the conversion of campestanol to 6-deoxocathasterone and the conversion of 6-deoxocathasterone to 6-deoxoteasterone is provided. The later biosynthetic steps (6-deoxoteasterone --> 3-dehydro-6-deoxoteasterone --> 6-deoxotyphasterol --> 6-deoxocastasterone --> 6alpha-hydroxycastasterone --> castasterone --> BL) were demonstrated by stepwise metabolic experiments. Therefore, these studies complete the documentation of the late C6-oxidation pathway. The biosynthetic sequence involved in the early C6-oxidation pathway (teasterone --> 3-dehydroteasterone --> typhasterol --> castasterone --> BL) was also demonstrated. These results show that both the early and late C6-oxidation pathways are functional in Arabidopsis. In addition we report two new observations: the presence of a new branch in the pathway, C6 oxidation of 6-deoxotyphasterol to typhasterol, and increased metabolic flow in BR-insensitive mutants.  (+info)

Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. (7/215)

Brassinosteroids (BRs) are plant growth-promoting natural products required for plant growth and development. Physiological studies have demonstrated that exogenous BR, alone or in combination with auxin, enhance bending of the lamina joint of rice. However, little is known about the function of endogenous BR in rice or other grass species. We report here the phenotypical and molecular characterization of a rice dwarf mutant, d61, that is less sensitive to BR compared to the wild type. We cloned a rice gene, OsBRI1, with extensive sequence similarity to that of the Arabidopsis BRI gene, which encodes a putative BR receptor kinase. Linkage analysis showed that the OsBRI1 gene is closely linked to the d61 locus. Single nucleotide substitutions found at different sites of the d61 alleles would give rise to amino acid changes in the corresponding polypeptides. Furthermore, introduction of the entire OsBRI1 coding region, including the 5' and 3' flanking sequences, into d61 plants complemented the mutation to display the wild-type phenotype. Transgenic plants carrying the antisense strand of the OsBRI1 transcript showed similar or even more severe phenotypes than those of the d61 mutants. Our results show that OsBRI1 functions in various growth and developmental processes in rice, including (1) internode elongation, by inducing the formation of the intercalary meristem and the longitudinal elongation of internode cells; (2) bending of the lamina joint; and (3) skotomorphogenesis.  (+info)

Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. (8/215)

As the first step toward understanding the involvement of endogenous brassinosteroids (BRs) in cytodifferentiation, we analyzed biosynthetic activities of BRs in zinnia (Zinnia elegans L. cv Canary Bird) cells differentiating into tracheary elements. The results of feeding experiments suggested that both the early and late C6-oxidation pathways occur during tracheary element differentiation. Gas chromatography-mass spectrometry analysis revealed that five BRs, castasterone, typhasterol, 6-deoxocastasterone, 6-deoxotyphasterol, and 6-deoxoteasterone, actually existed in cultured zinnia cells and culture medium. Quantification of endogenous BRs in each stage of tracheary element differentiation by gas chromatography-mass spectrometry exhibited that they increased dramatically prior to the morphogenesis, which was consistent with the idea that BRs are necessary for the initiation of the final stage of tracheary element differentiation. Moreover, the proportion of each BR in culture medium was quite different from that in cells, suggesting that specific BRs are selectively secreted into medium and may function outside the cells.  (+info)