Steady-state motion visual evoked potentials produced by oscillating Newton's rings: implications for brain-computer interfaces. (9/122)

 (+info)

A real-time fMRI-based spelling device immediately enabling robust motor-independent communication. (10/122)

 (+info)

Automatic artefact removal in a self-paced hybrid brain- computer interface system. (11/122)

 (+info)

Intersession consistency of single-trial classification of the prefrontal response to mental arithmetic and the no-control state by NIRS. (12/122)

 (+info)

Prediction of imagined single-joint movements in a person with high-level tetraplegia. (13/122)

Cortical neuroprostheses for movement restoration require developing models for relating neural activity to desired movement. Previous studies have focused on correlating single-unit activities (SUA) in primary motor cortex to volitional arm movements in able-bodied primates. The extent of the cortical information relevant to arm movements remaining in severely paralyzed individuals is largely unknown. We record intracortical signals using a microelectrode array chronically implanted in the precentral gyrus of a person with tetraplegia, and estimate positions of imagined single-joint arm movements. Using visually guided motor imagery, the participant imagined performing eight distinct single-joint arm movements, while SUA, multispike trains (MSP), multiunit activity, and local field potential time (LFPrms), and frequency signals (LFPstft) were recorded. Using linear system identification, imagined joint trajectories were estimated with 20-60% variance explained, with wrist flexion/extension predicted the best and pronation/supination the poorest. Statistically, decoding of MSP and LFPstft yielded estimates that equaled those of SUA. Including multiple signal types in a decoder increased prediction accuracy in all cases. We conclude that signals recorded from a single restricted region of the precentral gyrus in this person with tetraplegia contained useful information regarding the intended movements of upper extremity joints.  (+info)

The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. (14/122)

BACKGROUND AND PURPOSE: Although there is strong evidence on the beneficial effects of virtual reality (VR)-based rehabilitation, it is not yet well understood how the different aspects of these systems affect recovery. Consequently, we do not exactly know what features of VR neurorehabilitation systems are decisive in conveying their beneficial effects. METHODS: To specifically address this issue, we developed 3 different configurations of the same VR-based rehabilitation system, the Rehabilitation Gaming System, using 3 different interface technologies: vision-based tracking, haptics, and a passive exoskeleton. Forty-four patients with chronic stroke were randomly allocated to one of the configurations and used the system for 35 minutes a day for 5 days a week during 4 weeks. RESULTS: Our results revealed significant within-subject improvements at most of the standard clinical evaluation scales for all groups. Specifically we observe that the beneficial effects of VR-based training are modulated by the use/nonuse of compensatory movement strategies and the specific sensorimotor contingencies presented to the user, that is, visual feedback versus combined visual haptic feedback. CONCLUSIONS: Our findings suggest that the beneficial effects of VR-based neurorehabilitation systems such as the Rehabilitation Gaming System for the treatment of chronic stroke depend on the specific interface systems used. These results have strong implications for the design of future VR rehabilitation strategies that aim at maximizing functional outcomes and their retention. Clinical Trial Registration- This trial was not registered because it is a small clinical study that evaluates the feasibility of prototype devices.  (+info)

Relationship between electrical brain responses to motor imagery and motor impairment in stroke. (15/122)

BACKGROUND AND PURPOSE: New strategies like motor imagery based brain-computer interfaces, which use brain signals such as event-related desynchronization (ERD) or event-related synchronization (ERS) for motor rehabilitation after a stroke, are undergoing investigation. However, little is known about the relationship between ERD and ERS patterns and the degree of stroke impairment. The aim of this work was to clarify this relationship. METHODS: EEG during motor imagery and execution were measured in 29 patients with first-ever monolateral stroke causing any degree of motor deficit in the upper limb. The strength and laterality of the ERD or ERS patterns were correlated with the scores of the European Stroke Scale, the Medical Research Council, and the Modified Ashworth Scale. RESULTS: Mean age of the patients was 58 +/- 15 years; mean time from the incident was 4 +/- 4 months. Stroke lesions were cortical (n=8), subcortical (n=11), or mixed (n=10), attributable to either an ischemic event (n=26) or a hemorrhage (n=3), affecting the right (n=16) or left (n=13) hemisphere. Higher impairment was related to stronger ERD in the unaffected hemisphere and higher spasticity was related to stronger ERD in the affected hemisphere. Both were related to a relatively stronger ERS in the affected hemisphere. CONCLUSIONS: The results of this study may have implications for the design of potential poststroke rehabilitation interventions based on brain-computer interface technologies that use neurophysiological signals like ERD or ERS as neural substrates for the mutual interaction between brain and machine and, ultimately, help stroke patients to regain motor control.  (+info)

Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation: a feasibility study. (16/122)

 (+info)