(1/6161) The Genexpress IMAGE knowledge base of the human brain transcriptome: a prototype integrated resource for functional and computational genomics.

Expression profiles of 5058 human gene transcripts represented by an array of 7451 clones from the first IMAGE Consortium cDNA library from infant brain have been collected by semiquantitative hybridization of the array with complex probes derived by reverse transcription of mRNA from brain and five other human tissues. Twenty-one percent of the clones corresponded to transcripts that could be classified in general categories of low, moderate, or high abundance. These expression profiles were integrated with cDNA clone and sequence clustering and gene mapping information from an upgraded version of the Genexpress Index. For seven gene transcripts found to be transcribed preferentially or specifically in brain, the expression profiles were confirmed by Northern blot analyses of mRNA from eight adult and four fetal tissues, and 15 distinct regions of brain. In four instances, further documentation of the sites of expression was obtained by in situ hybridization of rat-brain tissue sections. A systematic effort was undertaken to further integrate available cytogenetic, genetic, physical, and genic map informations through radiation-hybrid mapping to provide a unique validated map location for each of these genes in relation to the disease map. The resulting Genexpress IMAGE Knowledge Base is illustrated by five examples presented in the printed article with additional data available on a dedicated Web site at the address http://idefix.upr420.vjf.cnrs.fr/EXPR++ +/ welcome.html.  (+info)

(2/6161) High-linoleate and high-alpha-linolenate diets affect learning ability and natural behavior in SAMR1 mice.

Semipurified diets incorporating either perilla oil [high in alpha-linolenate, 18:3(n-3)] or safflower oil [high in linoleate, 18:2(n-6)] were fed to senescence-resistant SAMR1 mouse dams and their pups. Male offspring at 15 mo were examined using behavioral tests. In the open field test, locomotor activity during a 5-min period was significantly higher in the safflower oil group than in the perilla oil group. Observations of the circadian rhythm (48 h) of spontaneous motor activity indicated that the safflower oil group was more active than the perilla oil group during the first and second dark periods. The total number of responses to positive and negative stimuli was higher in the safflower oil group than in the perilla oil group in the light and dark discrimination learning test, but the correct response ratio was lower in the safflower oil group. The difference in the (n-6)/(n-3) ratios of the diets reflected the proportions of (n-6) polyunsaturated fatty acids, rather than those of (n-3) polyunsaturated fatty acids in the brain total fatty acids, and in the proportions of (n-6) and (n-3) polyunsaturated fatty acids in the total polyunsaturated fatty acids of the brain phospholipids. These results suggest that in SAMR1 mice, the dietary alpha-linolenate/linoleate balance affects the (n-6)/(n-3) ratio of brain phospholipids, and this may modify emotional reactivity and learning ability.  (+info)

(3/6161) Cloning of a bovine orphan transporter and its short splicing variant.

We have isolated a cDNA (bv7-3) encoding a member of the Na+,Cl(-)-dependent transporter family and its short splicing variant (bv7-3s) by screening a bovine retina cDNA library. Sequence analysis revealed that bv7-3 encodes a protein of 729 amino acids and is a bovine homologue of the rat orphan transporter v7-3-2. bv7-3s contains 265 amino acids, sharing 252 N-terminal amino acids with bv7-3. Both mRNAs for bv7-3 and bv7-3s were detected in nervous system by Northern blot analysis. In immunofluorescence analysis in transfected HEK 293T cells, myc-tagged bv7-3 was mainly detected on the plasma membrane, whereas myc-tagged bv7-3s showed a pattern of intracellular membrane staining.  (+info)

(4/6161) Peri-operative changes in echocardiographic measurements and plasma atrial and brain natriuretic peptide concentrations in 3 dogs with patent ductus arteriosus.

Peri-operative changes in echocardiographic measurements and plasma levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were investigated for 1 month in 3 dogs with patent ductus arteriosus (PDA). Post-operative left ventricular end-diastolic dimention and fractional shortening decreased in all cases. Pre-operatively increased plasma ANP concentrations reduced dramatically after the operation. Peri-operative changes in plasma BNP levels had slightly S-shaped curves in all cases. These observations suggest that post-operative responsiveness of ANP and cardiac function are rapid in comparison with cardiac morphological changes, and BNP has a different pathophysiological significance from ANP in dogs with PDA.  (+info)

(5/6161) Prediction of the coding sequences of unidentified human genes. XII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.

In this paper, we report the sequences of 100 cDNA clones newly determined from a set of size-fractionated human brain cDNA libraries and predict the coding sequences of the corresponding genes, named KIAA0819 to KIAA0918. These cDNA clones were selected on the basis of their coding potentials of large proteins (50 kDa and more) by using in vitro transcription/translation assays. The sequence data showed that the average sizes of the inserts and corresponding open reading frames are 4.4 kb and 2.5 kb (831 amino acid residues), respectively. Homology and motif/domain searches against the public databases indicated that the predicted coding sequences of 83 genes were similar to those of known genes, 59% of which (49 genes) were categorized as coding for proteins functionally related to cell signaling/communication, cell structure/motility and nucleic acid management. The chromosomal locations and the expression profiles of all the genes were also examined. For 54 clones including brain-specific ones, the mRNA levels were further examined among 8 brain regions (amygdala, corpus callosum, cerebellum, caudate nucleus, hippocampus, substantia nigra, subthalamic nucleus, and thalamus), spinal cord, and fetal brain.  (+info)

(6/6161) Functional integrity of mitochondrial genomes in human platelets and autopsied brain tissues from elderly patients with Alzheimer's disease.

To determine whether pathogenic mutations in mtDNA are involved in phenotypic expression of Alzheimer's disease (AD), the transfer of mtDNA from elderly patients with AD into mtDNA-less (rho0) HeLa cells was carried out by fusion of platelets or synaptosomal fractions of autopsied brain tissues with rho0 HeLa cells. The results showed that mtDNA in postmortem brain tissue survives for a long time without degradation and could be rescued in rho0 HeLa cells. Next, the cybrid clones repopulated with exogenously imported mtDNA from patients with AD were used for examination of respiratory enzyme activity and transfer of mtDNA with the pathogenic mutations that induce mitochondrial dysfunction. The presence of the mutated mtDNA was restricted to brain tissues and their cybrid clones that formed with synaptosomes as mtDNA donors, whereas no cybrid clones that isolated with platelets as mtDNA donors had detectable mutated mtDNA. However, biochemical analyses showed that all cybrid clones with mtDNA imported from platelets or brain tissues of patients with AD restored mitochondrial respiration activity to almost the same levels as those of cybrid clones with mtDNA from age-matched normal controls, suggesting functional integrity of mtDNA in both platelets and brain tissues of elderly patients with AD. These observations warrant the reassessment of the conventional concept that the accumulation of pathogenic mutations in mtDNA throughout the aging process is responsible for the decrease of mitochondrial respiration capacity with age and with the development of age-associated neurodegenerative diseases.  (+info)

(7/6161) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia.

Administration of noncompetitive NMDA/glutamate receptor antagonists, such as phencyclidine (PCP) and ketamine, to humans induces a broad range of schizophrenic-like symptomatology, findings that have contributed to a hypoglutamatergic hypothesis of schizophrenia. Moreover, a history of experimental investigations of the effects of these drugs in animals suggests that NMDA receptor antagonists may model some behavioral symptoms of schizophrenia in nonhuman subjects. In this review, the usefulness of PCP administration as a potential animal model of schizophrenia is considered. To support the contention that NMDA receptor antagonist administration represents a viable model of schizophrenia, the behavioral and neurobiological effects of these drugs are discussed, especially with regard to differing profiles following single-dose and long-term exposure. The neurochemical effects of NMDA receptor antagonist administration are argued to support a neurobiological hypothesis of schizophrenia, which includes pathophysiology within several neurotransmitter systems, manifested in behavioral pathology. Future directions for the application of NMDA receptor antagonist models of schizophrenia to preclinical and pathophysiological research are offered.  (+info)

(8/6161) ATP inhibition of a mouse brain large-conductance K+ (mslo) channel variant by a mechanism independent of protein phosphorylation.

1. We investigated the effect of ATP in the regulation of two closely related cloned mouse brain large conductance calcium- and voltage-activated potassium (BK) channel alpha-subunit variants, expressed in human embryonic kidney (HEK 293) cells, using the excised inside-out configuration of the patch-clamp technique. 2. The mB2 BK channel alpha-subunit variant expressed alone was potently inhibited by application of ATP to the intracellular surface of the patch with an IC50 of 30 microM. The effect of ATP was largely independent of protein phosphorylation events as the effect of ATP was mimicked by the non-hydrolysable analogue 5'-adenylylimidodiphosphate (AMP-PNP) and the inhibitory effect of ATPgammaS was reversible. 3. In contrast, under identical conditions, direct nucleotide inhibition was not observed in the closely related mouse brain BK channel alpha-subunit variant mbr5. Furthermore, direct nucleotide regulation was not observed when mB2 was functionally coupled to regulatory beta-subunits. 4. These data suggest that the mB2 alpha-subunit splice variant could provide a dynamic link between cellular metabolism and cell excitability.  (+info)